Lesser Known Facts About Tryptophan Side Effects

The Case Against Taking L-Tryptophan Supplements

Tryptophan side effects, contrary to claims made by many influential experts, are rather serious. Many nutritional supplement manufacturers and promoters advertise and market the substance as an exceedingly safe natural health product –with a preferential emphasis on numerous alleged benefits (e.g., fights depression, anxiety, attention deficit hyperactivity disorder (ADHD), premenstrual syndrome (PMS), and is a natural sleeping aid).

Yet, tryptophan side effects are seldom, if ever, mentioned or explained in a comprehensive manner, giving the impression that such data don't exist (or that there are only benefits of tryptophan).

The widespread unison agreement among experts and marketers in support of tryptophan's safety (and effectiveness) is reminiscent of an observation made by the entrepreneur and author Seth Godin:

“It's easy to pretend expertise when there's no data to contradict you.”

Fact is, there is plenty of solid data on tryptophan that contradict the mainstream perspective. Tryptophan side effects are numerous, and several of them are quite problematic.

The plethora of scientific research suggests that, generally, it is best to avoid consuming L-tryptophan as a stand-alone, individual nutritional supplement on a long-term basis in order to prevent the deterioration of your health due to some rather grave tryptophan side effects.

Human Tryptophan Requirement, And Typical Tryptophan Doses For Sleep Induction & Mood Elevation

The tryptophan requirement for a human adult had been set at around 4-5mg/kg/day (Moehn, et al., 2012). This means, as an example, a person weighing 70kg (154lbs) would need 280-350mg of the tryptophan amino acid per day from all consumed food sources.

A typical daily therapeutic tryptophan dosage (i.e., doses of supplemental L-tryptophan for insomnia and depression) is in the 50mg-3g range (Braverman, 2003). In fact, doses between 1-5g/d have been used habitually by many persons for these purposes.

Very high doses of L-tryptophan, over 10g –or even 30g– per day, had been used by some people during the 1980s as the tryptophan tragedy of 1989 had uncovered (Crist, 2005).

(For more detailed data on the alleged effectiveness of supplemental tryptophan for so-called “serotonin deficiency symptoms”, such as depression and sleep disturbances, refer to my piece "Tryptophan For Sleep: One Of The Good Natural Sleeping Aids?" –see 'Recommended next page(s)' at the end of this article for a direct link to it).

What Are The Problems With Tryptophan?

Tryptophan Side Effects: Far From Harmless

Generally, there are L-tryptophan side effects of more minor importance and severity, such as most acute transient events, and there are the more problematic tryptophan side effects that often have a long “incubation period” until, eventually, worrisome health issues become evident.

In the body tryptophan (sometimes misspelled as “triptophan” or “tryptofan”) is metabolized, via two basic pathways, the indole-kynurenine-niacin pathway and the serotonin-melatonin pathway (Chung & Gadupudi, 2011). Virtually all catabolites (besides niacin) are implicated with significant tryptophan side effects.

Acute Tryptophan Side Effects

An experiment (Greenwood, et al., 1975) with a one-time dose of 5g of the aromatic amino acid evoked these immediate tryptophan side effects in humans:

● Drowsiness
● Nausea
● Headaches

Similar studies confirmed these acute outcomes, including dizziness, fatigue, and lethargy, among the more customary acute tryptophan side effects (Yuwiler, et al., 1981; Cunliffe, et al., 1998).

Now, let's get on with tryptophan side effects of higher complexity and grimness...

Tryptophan Side Effects:
Impaired Liver Function

A long-term animal study, using a relatively modest dose of L-tryptophan (roughly the human equivalent of 1.5-3 g per day, which is a common supplemental dose), didn't lead to tryptophan side effects such as morphological changes to the liver in healthy animals (Bucci, et al., 1982). Tryptophan side effects only appeared in those rodents that had received a bypass treatment in their liver, which deranged their tryptophan metabolism. This allowed for the accumulation of high plasma tryptophan levels upon the administration of the amino acid (Bucci, et al., 1982).

However, a similar, albeit short-term, study demonstrated that a comparable dose of L-tryptophan caused liver damage in animals whose metabolism of tryptophan had not been tampered with (Trulson & Sampson, 1986). According to the information in their study protocol, the amount the study authors fed the rodents would equate to around 1.5-4g/day of L-tryptophan for most people.

Other studies on animals, however, raised more pragmatic concerns about tryptophan and liver function... 

Liver enzymes form highly mutagenic L-tryptophan degradation products (e.g., 3-amino-1-methyl-5H-pyrido[4,3-b]indole) that cause damage to the liver, including cancer (Nemoto, et al., 1979; Yamazoe, et al., 1980 & 1981; Ashida, et al., 1998; Suzuki, et al., 2008). In health people a low salt intake activates the serotonergic system and increases L-tryptophan decomposition substances (Sharma, et al., 1993), raising the risk for side effects of tryptophan.

An animal study indicated that the addition of miso, a fermented soybean product, prevented the liver injury that was caused by at least one of these mutagenic tryptophan breakdown components (Suzuki, et al., 2008). A study with humans found similar protective effects by drinking coffee (Bichler, et al., 2007). Sulforaphane, a constituent of broccoli, and curcumin (a constituent of the spice turmeric), are also antagonistic to the mutagenic impact of some decomposition products of tryptophan (Shishu, et al., 2002; Shishu & Kaur, 2003).

It had been demonstrated that white tea, much more so than green tea, reduced tryptophan side effects, such as mutagenic harm, from some of these poisonous metabolites (Santana-Rios, et al., 2001). Other investigations elucidated that some vitamins, such as beta-carotene, vitamin A, B6 & E, have ameliorating activities against these poisonous L-tryptophan side effects from metabolites and adducts (Edenharder, et al., 1998; Chung & Gadupudi, 2011).

Tryptophan Side Effects:
Higher Risk For Eye Damage

The biologist Raymond Peat, PhD, pointed out how an animal study on L-tryptophan demonstrated that the amino acid may increase the risk for cataracts by disrupting the energy metabolism of the eye lens, and thus Peat cautioned against the practice of using tryptophan supplements (Peat, Spring 2006).

Research on human eye lenses revealed that at least some tryptophan metabolites bind with proteins in the lenses and may be responsible for the yellowing of the lens that often becomes evident with aging (Takikawa, et al., 2003). The catabolites' hampering of the metabolic energy processes in the lens, inducing a relative energy shortage, could partly account for the clouding effect of the lens because of a proportional impairment and inefficiency of removing cellular debris, such as cell components that got damaged by reactive oxygen species (free radicals).

As far as tryptophan side effects from its melatonin end product concern, the neurohormone especially shouldn't be consumed –even occasionally– during the daytime because melatonin has been found to react with sunlight (UVA rays), potentially leading to visual disturbances during daytime (Gagné, et al., 2009) like blurred vision (as experienced by some people), and eye damage (Wiechmann & O'Steen, 1992; Sugawara, et al., 1998; Kim, et al, 1999; Wiechmann, 2002; Wiechmann, et al., 2008). Perhaps this is related to the fact that the tryptophan amino acid strongly absorbs ultraviolet light (Berg, et al., 2002). And, that L-tryptophan is the most susceptible amino acid to certain forms of free radical assaults, such as from the hydroxyl radical (Wu, et al., 2006).

Free radicals such as singlet molecular oxygen are among the principal light-induced harmful agents responsible for injury to the skin and eyes (Matuszak, et al., 2003). While melatonin is said to be a strong antioxidant it is capable of generating singlet molecular oxygen upon light stimulation, whether via UV or laser rays (Matuszak, et al., 2003; Maharaj, et al., 2005). Melatonin is elevated in animals with retinal damage (Hawlina, et al., 1992). Similarly, retinal dystrophy (=degeneration) upon the addition of melatonin were found in research projects involving humans (e.g., Mironova, et al., 1989). Ocular tryptophan side effects apparently encompass the use of melatonin.

Tryptophan Side Effects:
Disturbed Protein Metabolism And Impaired Brain Function

“[...] the pharmaceutical industry's myth has led people to believe that serotonin is the chemical of happiness, and that tryptophan is its benign nutritional precursor […].” (Raymond Peat, PhD, Biologist, in 2009)

Some studies (e.g., Metzner, et al., 2005; Frølund, et al., 2010; Edwards, et al., 2011) found that L-tryptophan and some of its derivatives, like the indolamines 5-hydroxytryptophan ("natural 5-HTP"; a lesser known term for it is “oxitriptan”) and 5-hydroxytryptamine (5-HT, better known as “serotonin”), efficiently block a carrier protein for numerous protective substances, including GABA (gamma amino butyric acid), short chain fatty acids, glycine, proline (and for cancer drugs).

This indicates that L-tryptophan supplements may excessively disrupt protein absorption in the intestine. And, it may hamper optimal brain function since the transporter protein is also present in the brain (and some other organs). Related research, for instance, indicated that certain tryptophan degradation substances may block the glycine receptor in the brain (Stone, 1993; Erhardt, et al., 2009).

This finding is intimately associated with science research from more than half a century ago when it was  discovered that glycine isn't properly utilized by the body in a vitamin B6 deficiency state (Davis, 1965). Likewise, since the 1940s, it was also noted through scientific research on rodents that a lack of vitamin B6 leads to a dysfunctional-abnormal tryptophan metabolism, manifested in an elevated urine level of “xanthurenic acid” (XA), a harmful metabolic degradation product of L-tryptophan (Lepkovsky, et al., 1943; Porter, et al., 1948; Davis, 1965).

But it also became clear since the early 1940s and as time went on, that a deficiency of vitamin B6 raises the synthesis of a variety of tryptophan metabolites (Lepkovsky, et al., 1943; Porter, et al., 1948; Gerras, et al., 1977; Green, et al., 1980; Guilarte & Wagner, 1987; Chung & Gadupudi, 2011; Barichello, et al., 2014). Or to say it another way, increased levels of several common tryptophan metabolites could be vitamin B6 deficiency symptoms.

These tryptophan side effects may partially explain the link between higher serotonin levels and migraines and mood disorders (Mohammad-Zadeh, et al., 2008; Gupta, et al., 2011) since among the many GABA benefits is its protective impact on brain cells (Vaishnav & Lutsep, 2002; Mirzoian, 2003) and GABA is reduced in people with mood and anxiety disorders (Shiah & Yatham, 1998; Brambilla, et al., 2003; Winkelman, et al. 2008; Streeter, et al., 2010) and also Alzheimer's Disease (Mohr, et al., 1986). Other tryptophan side effects, conferred by several degradation products, encompass the direct suppression of the functioning of GABA (Zarkovsky, 1986; Guilarte, et al., 1988; Kanai, et al., 1989).

Glycine and short chain fatty acids, like GABA, have an inhibitory calming action on the brain.

Animal studies (e.g., Pechenova, et al., 1983) have documented that tryptophan loading disturbs protein synthesis, leading to protein deficiency. Tryptophan side effects from “loading” the amino acid has also been reported in humans. The infusion of tryptophan in healthy young men, at commonly used doses (1g/day, 3g/day, 5g/day), depleted the levels of many other amino acids such as tyrosine which is vital for brain function –at all doses studied (Heuther, et al., 1992).

Some of tryptophan's breakdown products act as potent neurotoxins, via elevating excitatory glutamate levels and free radical production, while some metabolites (from tryptophan catabolism) appear to protect brain cells (Huether, et al., 1999; Stone, 2003; Sas, et al., 2007).

An in vitro study found that two tryptophan side effects were the depletion of brain antioxidants and increased lipid peroxidation (free radical production) in brain tissues (Feksa, et al., 2006). These particular tryptophan side effects, which are a result of an imbalance between neuroprotective and neurotoxic effects, are implicated in a number of degenerative brain diseases such as Alzheimer's, Parkinson's, and Huntington's Disease, but also in epilepsy and strokes (Németh, et al., 2005; Feksa, et al., 2006; Sas, et al., 2007; Reyes Ocampo, et al., 2014).

Closely related to these tryptophan side effects, in experiments it has been established that serotonin is capable of (temporarily) impairing the protective blood-brain barrier (Winkler, et al., 1995; Abbott, 2000; Sharma, 2004) which could lead to an increase in toxic events in the brain, such as edema (brain swelling) and brain degeneration (Sharma, 2004).

A researcher stated in his analysis that:

“Elevation of plasma and tissue serotonin occurs under a wide variety of neurological and psychiatric conditions.” (Sharma, 2004)

Concerning acute serotonin side effects and serotonin toxicity...

One of the worst case scenarios of an overload of serotonergic activity (“serotonin overload”) is the occurrence of "the serotonin syndrome" (symptoms usually appear within a day or a few days), which kills numerous people every year (Young, et al., 2008). Usually, this is an outcome of doctor prescribed polypharmacy whereas a person ingests numerous serotonin-boosting medications (such as selective serotonin reuptake inhibitors or SSRIs), or instances of great exposure to a single serotonin-augmenting agent (Ables & Nagubilli, 2010).

What is serotonin? Serotonin is a neurotransmitter ("nerve messenger"). Some of the classic symptoms of the serotonin syndrome (a.k.a "5-HT syndrome") are mental and neuromuscular agitation, tremors, convulsions, confusion incoordination, seizures, fever, and organ failure (Ables & Nagubilli, 2010).

Many years ago researchers (e.g., Jacobs, 1991) have already warned that the external stimulation or manipulation of the serotonergic system by psychotropic drugs raises the levels of serotonin beyond the range from living under normal conditions, more reflective of a pathological (=diseased) state.

Yet, since around the 1980s, when the medical-pharmaceutical industry began to heavily promote the type of psychotropic drugs that specifically raise brain serotonin activity such the SSRI antidepressants, it has become "common knowledge" that serotonin –coined the “mood-lifting hormone", the “happiness hormone", the “feel-good hormone”, the “happy molecule”, or the “happy neurotransmitter"– is the antidote to depression.

The perpetual inundation of the public with the serotonin deficiency-depression paradigm, also known as "the serotonin hypothesis" (in support of the "chemical imbalance theory" of mental disorders), an ideology that has been fabricated and pushed by big corporate medicine (Breggin, 2001; Lacasse & Leo, 2005; Kirsch, 2009; Gøtzsche, 2013; Fiddaman, 2019), has earned the drug companies a fortune ever since from the sale of serotonin-stimulating medications or "happy pills" (i.e., SSRI drugs).

However, independent investigators such as David Healy, MD, the author of several books on psychoactive drugs, stated regarding the notion of chemical depression that:

"[...] it is now widely assumed that our serotonin levels fall when we feel low [...]. But there is no evidence for any of this, nor has there ever been." (Healy, 2004) [emphasis added]

Another researcher and author of a number of books on SSRI medications and other antidepressants, Peter R. Breggin, MD, pointed out that:

“Science does not possess the technology to measure biochemical imbalances in the living brain. The biochemical imbalances speculation is actually a drug company marketing campaign to sell drugs.” (Breggin, 2001) [emphasis added]

(But it isn't uncommon for the medical establishment to spread and sustain myths based on vested interests. Other examples are the myth of natural hormone replacement therapy with estrogen, or the myth that mammograms do little harm and prevent women from succumbing to an early death from breast cancer -see The Mammogram Myth: The Independent Investigation Of Mammography The Medical Profession Doesn't Want You To Know About.)

Yet, this type of information has been seldom brought up in discussions about tryptophan side effects, the alleged “happiness neurotransmitter” serotonin, and so-called “brain chemistry disorders”.

A 2017 publication of the prestigious Linus Pauling Institute (LPI) mirrored the lack of real evidence about the brain's physiological-metabolic workings (“brain chemistry”). In a LPI article on metabolomics or “metabolic profiling”, the study of metabolites in cells, urine, blood and other biological fluids of tissue (e.g. the brain) and their potential relationships to specific diseases or physiological status, it said:

“[...] we are still not able to identify the majority of metabolites in a given biological sample.” (Maier & Stevens, 2017)

In 2020 the American investigative reporter Jon Rappoport wrote this in an article:

"In their [=allopathic orthodox medicine] wretched track record, we come to the whole subject of medical psychiatry. This is where real and deep human suffering –from many different causes– is professionally re-channeled into arbitrary categories of so-called “mental disorders,” requiring treatment with devastating drugs. The fraud is wall to wall. […]. The first question to ask is: do these mental disorders have any scientific basis? There are now roughly 300 of them. They multiply like fruit flies. An open secret has been bleeding out into public consciousness for the past ten years. THERE ARE NO DEFINITIVE LABORATORY TESTS FOR ANY SO-CALLED MENTAL DISORDER. No defining blood tests, no urine tests, no saliva tests, no brain scans, no genetic assays. And along with that: ALL SO-CALLED MENTAL DISORDERS ARE INVENTED, CONCOCTED, NAMED, LABELED, DESCRIBED, AND CATEGORIZED by committees of psychiatrists, from menus of human behaviors. […]. All diagnoses are based on arbitrary clusters or menus of human behavior. The drugs are harmful, dangerous, toxic. Some of them induce violence. Suicide, homicide.” (Rappoport, 2020) [explanation added]

In his book "Deadly Medicines and Organised Crime: How Big Pharma Has Corrupted Healthcare" (2013) author and research scientist Peter Gøtzsche, MD, explained that "the chemical imbalance hoax" is inescapably showcased by the fact that the number of mentally disabled has skyrocketed since the introduction of psychotropic medications (antidepressants and antipsychotics) whereas you would expect to find the exact opposite if these drugs were to actually correct an alleged chemical imbalance in the brain. In fact, Gøtzsche argued that these drugs create psychological disorders, especially the way they are being prescribed (Gøtzsche, 2013).

These were also among the findings and conclusions brought forward a few years earlier in some other books. In their exhaustive efforts, the authors, Joanna Moncrieff, MD, Grace Jackson, MD, and Robert Whitaker, solidly documented, with many brain images, illustrations, graphs, and references, that psychopharmaceuticals, particularly on an ongoing long-term protocol of usage (the mode these drugs are commonly used), cause brain shrinkage, neurodegeneration, dementia, premature death, and are the culprit for the epidemic of mental illness and disability in America (Moncrieff, 2008; Jackson, 2009; Whitaker, 2010 & 2011).

Truth be told, there is disturbing, sound evidence on how the intake of SSRI drugs (e.g., Prozac, Paxil, Zoloft) can lead to violence, suicide, and (enduring) sexual dysfunction, such as low libido, impotence (erectile dysfunction), and genital numbness (Breggin, 1995 & 2001; Glenmullen, 2000; Healy, 2004; Burwell & Stith, 2008; Gøtzsche, 2013; Healy, et al., 2018; Prescrire, Feb-2020). The drug company that created Prozac, for example, already knew before they began to market the drug worldwide to the unsuspecting public that it significantly increases the risk of suicide (Healy, 2004).

In decisive corroboration, former US Senator John DeCamp, (1941-2017), an attorney, businessman, and author, described clandestine operations of fact suppression and information control surrounding the truth about SSRI antidepressants by the criminal colluding US state-medical allopathy establishment (i.e., the "trustworthy" "objective" official medical apparatus).

DeCamp had represented various victims, or victims' families, of the infamous Columbine massacre of 1999 –a.k.a the Columbine high school shooting– as a lawyer in court (DeCamp, 2006). By way of that function he was one of very few select people who had witnessed exclusive evidence (“certain Columbine materials and tapes”) others never got to see (DeCamp, 2006). In 2005 the American legislator explained the real reason for this extreme secrecy about the Columbine shooting, referring to publicly hidden politically inconvenient Columbine truths:

“More court action has been done to keep everything secret and destroy the depositions than anything I have seen in my 40 years of court activity.” (DeCamp, 2006) [emphasis added]


“[...] the second "crime" of Columbine has been the continuing and strong suppression of the information and evidence by the Legal System which keeps parents and the public from really ever knowing the truth –or at least having a real opportunity to make judgments as to what the truth is, by having available all the information from which to make judgments.” (DeCamp, 2006) [emphasis added]

DeCamp then goes on to say in what appears to be a state of utmost earnestness and with a strong sense of moral necessity:

“I believe –as sure as I believe anything on this earth– the claim I made in a lawsuit in federal court in which I alleged, on behalf of the Columbine children, that the Harris boy's actions [=one of the two shooters], including particularly and especially his final act of suicide, were caused or influenced to occur by the antidepressant drugs [=SSRIs] he was taking. […]. But, of course when I had this lawsuit going, none of this information was public knowledge but was all denied by the drug companies.” (DeCamp, 2006) [emphasis & explanations added]

In 2006 a drug maker of one of these SSRIs admitted that the medication raises the risk of suicide eight times (Jay, 2010).

In an interview Breggin stated that:

"One of the things that in the past had been known about depression is that it very, very rarely leads to violence. It's only been since the advent of these new SSRI drugs that we have murderers, sometimes even mass murderers, taking antidepressant drugs."

In juxtaposition to serotonin-mediated tryptophan side effects in terms of suicide and violent behavior, what's often forgotten by the commercialized culture is that the most widely prescribed types of pharmaceutical medications, cholesterol-lowering statin drugs ("statins"), taken by millions of people, also increase the rate of suicides and homicides, a solid link disregarded by corporate consensus medicine (Diamond & Ravnskov, 2015) and rarely ever considered to play a role in acts of violence or suicides.

Cholesterol is an essential nutrient for the body and the brain, and low blood cholesterol status is associated with major depression and suicidal behavior whereas high cholesterol levels help to prevent these conditions (Diamond & Ravnskov, 2015). Mood and cognitive disorders are among the most well-known statins' side effects (Diamond & Ravnskov, 2015). (For more information on the mostly unknown but real and serious adverse statin side effects, many of which are shared by the diet supplement garcinia cambogia extract, see my article "Do Garcinia Cambogia Side Effects Boost Diabetes?"  –direct link to it at the end of this article under Recommended next pages.)

(A more general aside to this article on tryptophan side effects: Big Allopathic Medicine's broad and lasting propagation of the chemical imbalance myth of mental illness (justifying the crafted "need" for their very profitable psychoactive drugs) and the cholesterol-heart disease myth (justifying the crafted "need" for their very profitable cholesterol-lowering drugs) are two stellar examples of why everyone's prime orientation probably ought to be to "Trust facts, not authorities" because these are cases where the real scientific facts are notably different from the fake claims of the authoritative-doctrinal medical syndicate.)

Other tryptophan side effects, or more accurately, serotonin side effects from the use of the "happy drugs" (SSRIs), have been uncovered.

Several research reports found that the long-term use of SSRIs leads to osteoporosis and hip fractures in both genders and at all age ranges, from adolescents to elderly people (Diem, et al., 2007; Haney, et al., 2007 & 2010; Williams, et al., 2008; Calarge, et al., 2007 & 2011), probably by increasing prolactin concentrations (Calarge, et al., 2007; Allport, 2008; Peat, Sept. 2011) and the stress hormone cortisol (Peat, Nov. 2008). Melatonin, for example, was denoted to stimulate prolactin release in healthy young women and men (Webley, et al., 1988; Okatani, et al., 1994; Kostoglou-Athanassiou, et al., 1998). Experiments on animals (e.g., Weinstock, et al., 1985) corroborated that melatonin amplifies the stress hormone prolactin.

What does serotonin do? Serotonin raises both prolactin (Jørgensen, 2007; Oberweis & Gragnoli, 2012) and cortisol (Peat, Nov. 2008). And, both of these substances contribute to osteoporosis (Peat, Sept. 2011).

In addition, it was also discovered that serotonin in the intestine, rather than merely in the brain from the influence of SSRIs, causes bone loss (Peat, Sept. 2011). Thus, “plain” serotonin, rather than some idiosyncratic effect of SSRIs, is causatively involved in osteoporosis. And arguably, the bone loss disease can be included on the list of tryptophan side effects since the amino acid is the basic precursor to serotonin.

The lucrative trend surrounding the "artificial" up-regulation of serotonin by drugs to, supposedly, improve brain function hadn't gone unnoticed by promoters of nutritional supplements. To get their share of the profitable marketing of serotonin as the vehicle to "emotional bliss", and to distinguish themselves from the drug companies, many supplement promoters have been claiming that tryptophan, the sole precursor for serotonin, is an effective, cheaper alternative to the serotonin-enhancing medications, and that this alternative is allegedly devoid of tryptophan side effects because it is a "natural" substance (some people have called it “natural Prozac” or "nature’s Prozac").

Besides the already mentioned reports on the destruction of brain antioxidants and the generation of free radicals in neuronal tissue by the amino acid, other brain dysfunction has been linked to tryptophan side effects from metabolites. One of the principal L-tryptophan catabolites, 3-hydroxykynurenine (3-HK or 3HOK), augments oxidative stress in the brain and is able to induce depression, epileptic seizures, and other brain damage (Guilarte & Wagner, 1987; Stone, 2003; Wichers & Maes, 2004).

Elevated levels of 3-HK and another neuroactive product of the kynurenine pathway, kynurenic acid (KA or KYNA), have also been found in people with schizophrenia, and the research indicates these substances are also involved in allied psychiatric disorders such as bipolar disorder, previously more often referred to as manic depression (Linderholm, et al., 2007; Erhardt, et al., 2009; Johansson, et al., 2013).

Among other brain-related tryptophan side effects are impaired learning capabilities from higher levels of serotonin (Peat, Spring & Summer 2009). This may relate to the findings of clinical investigations which reported that serotonin strongly decreased blood flow in the brain (Grome & Harper, 1983; Hajdu, et al., 1993; Aleksandrin, et al., 2005). Poor cerebral circulation means that brain cells receive less nutrients, oxygen, and energy, leading to poor cognitive performance.

Focused attention is not compromised, but rather improved, by a tryptophan deficiency in the brain (Mendelsohn, et al., 2009). Alongside the positive cognitive ramifications of improved blood circulation in the brain from a tryptophan deficiency, this is probably also the result of a corresponding lack of activation of excitatory dopamine neurons by certain tryptophan catabolites (Linderholm, et al., 2007; Erhardt, et al., 2009). As might be expected, the excessive stimulation of brain cells by dopamine hampers cognitive function which is evident in attention deficit disorder (ADD) and Attention-deficit/hyperactivity disorder (ADHD). This speaks against the routine use of tryptophan for ADHD and ADD, as to prevent cognitive-neurological tryptophan side effects.

The exposure to stressors or living under (progressively) stressful conditions, including during aging, increases the production of oxidative tryptophan degradation chemicals such as the kynurenines, particularly in the brain which may contribute to the cognitive decline with advancing age (Kepplinger, et al., 2005; Reyes Ocampo, et al., 2014), suggesting that such predicaments or contexts:

  • elevate the risk of tryptophan side effects, and
  • increase the body's requirement for certain vital micronutrients, in order to help it mitigate and combat the greater onslaught of some of these corrosive catabolic tryptophan products.

In animal experiments, for example, pyridoxine supplements (vitamin B6) prevented or ameliorated some of the deleterious kynurenine-mediated tryptophan side effects in the brain (such as memory/cognitive impairment) seen with pneumonia-incited bacterial meningitis (Barichello, et al., 2014).

Brain-related tryptophan side effects have also been reported in the scientific literature from one of the amino acid's end products, melatonin. Studies (e.g., Carman, et al., 1976; Dubocovich, et al., 1990) found that the addition of melatonin worsened depression, or, respectively, the suppression of melatonin improved symptoms of despair.

Tryptophan Side Effects:
Eosinophilia-Myalgia Syndrome (EMS)?

EMS is a group of debilitating inflammatory connective tissue disorders that tend to affect many organs and tissues.

The 1989 tryptophan eosinophilic myalgia incident killed a number of people and seriously disabled many victims permanently (Braverman, 2003).

However, it was mainly a transient, epidemic catastrophe. The reason for this is that the tryptophan-EMS disaster was virtually exclusively the result of product contamination by one particular nutritional supplement manufacturer (Showa Denko).

Nevertheless, it appears likely that the development of tryptophan-associated EMS is assisted and augmented by inflammatory, natural tryptophan metabolites (Gross, et al., 1999; Rieber & Belohradsky, 2010) because untainted L-tryptophan has been shown to lead to an increase of free radical production (lipid peroxidation) in muscles (Ronen, et al., 1999). Myalgia (muscle pain) is a distinctive feature of EMS and one of the characteristic fibromyalgia symptoms.

Another study, conducted by US government researchers, that compared EBT-tainted L-tryptophan (an analogue toxin implicated in the tryptophan-EMS epidemic of 1989-1990) to pure tryptophan supplements on rats (at a human equivalent dose of 5-6g/day over a prolonged time period) noted that:

"This study also strongly suggests that control L-TRP [=pure tryptophan] alone plays an important role in this [=EMS] and possibly other fibrosing illnesses, because it is associated with mild but significant myofascial thickening and alterations in peripheral mononuclear cell phenotypes, as well as with significant pancreatic pathology." (Love, et al., 1993) [explanation & emphasis added]

That is, the ingestion of an unadulterated version of the amino acid led to tryptophan side effects, such as the impairment of immunity, alterations in muscle tissue, and the growth of excessive connective tissues (fibrosis) and other structural modifications in the pancreas, supporting the existing evidence that L-tryptophan itself is problematic –at least at proportionally high, but not hugely excessive, doses since up to 3g/day is not considered a "high dose" (the average intake dose of contaminated tryptophan-associated EMS victims was at around 1.5-2g/day, with a range from 10mg to 35g/day, and people who consumed 4g/day, and more, had a greater likelihood to develop EMS [Crist, 2005]).

In a study report the authors stated in reference to the adulterated tryptophan eosinophilic myalgia disaster of 1989:

“Since only a fraction of persons who ingested implicated batches of LT [=L-tryptophan] developed disease, additional factors likely played pathogenetic roles.” (Okada, et al., 2009) [explanation & emphasis added]

Since there are indications that the unique, most probable source of the 1989 L-tryptophan-EMS catastrophe still hasn't been really resolved in the United States, it is conceivable that more tryptophan EMS cases will surface. At least one new tryptophan EMS case has appeared in 2010 after the ingestion of a L-tryptophan nutritional supplement from the United States, other tryptophan EMS cases have also turned up in recent times (for detailed information on the tryptophan-EMS epidemic of 1989 read my article L-Tryptophan: The Truth About The FDA Tryptophan Recall Of 1989).

Tryptophan Side Effects:
Severe Inflammation

The amino acid's significant inflammatory potential is prominent among many tryptophan side effects. For example, rats fed a higher tryptophan diet for a prolonged time experienced greater inflammation in their lungs, leg muscles, and other organs, and tissue damage was intensified by a tryptophan metabolite (Gross, et al., 1999).

Other investigations indicated that some inflammatory degradation products of L-tryptophan metabolism have diabetogenic activities (Ellis & Presley, 1973; Gerras, et al., 1977). Research experiments in the 1950s documented diabetogenic tryptophan side effects when it was found that xanthurenic acid (XA), an inflammatory metabolite of tryptophan whose urine level skyrockets in a vitamin B6 deficiency, destroys pancreatic tissues and causes diabetes in animals within a short time period (Kotake, 1955; Davis, 1965). A tryptophan-diabetes link was established likewise in humans back in the 1950s: when pure tryptophan was given to diabetics their urinary excretion of xanthurenic acid was elevated (Wiseman, et al., 1958). Similarly, more current human data found higher amounts of urine xanthurenic acid in type 2 diabetics compared to healthy subjects (Hattori, et al., 1984).

While serotonin, a product of tryptophan metabolism, can induce muscle degeneration (Beitner, et al., 1983; Peat, Fall 2006), another frequent, and possibly more likely, culprit for this type of damage are L-tryptophan decomposition substances.


Because the L-tryptophan intake dose corresponds positively with inflammatory metabolites of the amino acid (Okuno, et al., 2008) and because most supplemental tryptophan doesn't convert into serotonin in humans (only about 1-5% [Sjoerdsma, et al., 1956; Glenmullen, 2000; Richard, et al., 2009; Peat, March 2011]) but rather into inflammatory breakdown elements (Green, et al., 1980; Heuther, et al., 1992). These injurious tryptophan decomposition products remain elevated with longer term consumption of supplemental tryptophan (Green, et al., 1980), particularly with moderate to high doses (around 2-8gm/day).

Inflammatory L-tryptophan metabolites dramatically increase the production of reactive oxygen species (free radicals or oxidative stress) after the ingestion of a large dose (6gr) of the amino acid (Forrest, et al., 2004).

Other inflammatory conditions are linked to tryptophan side effects.

Studies (e.g., Smith & Garrett, 2005) indicate that the consumption of moderate-high dose tryptophan supplements leads to an elevation of histamine, an inflammatory substance involved in many degenerative diseases (including multiple sclerosis [Peat, Nov. 2008]), by blocking its degradation.

Tryptophan side effects also extend to inflammation involving melatonin. In people with nighttime asthma and rheumatoid arthritis, for example, it is melatonin side effects, such as increased inflammation, that contribute to the longevity of the diseases (Sutherland, et al., 2003; Cutolo, et al., 2005).

As alluded to, serotonin is a precursor of melatonin. Symptomatic asthmatics have high blood serotonin levels (Ménard, et al., 2007). Serotonin amplifies inflammatory materials, such as prostaglandin-E2 (PGE2) and nitric oxide (NO), that are responsible for the reduction in pulmonary function of people with asthma disease (Ménard, et al., 2007).

Tryptophan Side Effects:
The Promotion Of Cardiovascular Events

Serotonin, which is increased by L-tryptophan loading (Mateos, et al., 2009), is clearly implicated in cardiovascular disease and other tryptophan side effects (Gaddum & Hameed, 1954; Koren-Schwartzer, et al., 1994; Mohammad-Zadeh, et al., 2008; Peat, Summer 2009; Maclean & Dempsie, 2009 & 2010).

In an investigative paper the researchers commented on...

“[...] the damaging effects of serotonin, whose concentration in plasma increases in many diseases and is implicated as playing an important role in circulation disturbances.” (Assouline-Cohen, et al., 1998) [emphasis added]

To briefly refer to the history of tryptophan, since the late 19th century it was noted that a compound, which was identified in 1948 as serotonin, can induce platelet aggregation which leads to blood clumping or blood clots (Woolley & Shaw, 1954; Donaldson & Gray, 1959). (Ordinarily, the serotonin in the blood is primarily sequestered in platelets). The observation led to the adoption of one of the early names for the substance, thrombotonin, a derivative of thrombus (=blood clot).

Since the late 1930s it had been recognized that a substance, which turned out to be serotonin, is involved in the development of high blood pressure by constricting blood vessels (Donaldson & Gray, 1959). This physiological event is analogous to serotonin's “contracting” effect in gut muscles causing intestinal peristalsis which is the physiological process of rhythmically pushing food along in the gut (Gaddum & Hameed, 1954; Woolley & Shaw, 1954).

There has been scientific evidence (e.g., Weinstock, et al., 1985) demonstrating that tryptophan side effects from serotonin, such as blood vessel constriction (vasoconstriction), leading to high blood pressure (hypertension) , also occurs with melatonin.

Tryptophan Side Effects:
Cancer Initiation & Promotion

“It could be concluded that tryptophan metabolites play a complementary role in promoting carcinogenesis […].” (Chung & Gadupudi, 2011)

Serotonin's established involvement in the promotion of blood clotting (coagulation) has further ramifications.

Research in the 1960s by Domenico Agostino, VMD, and Eugene Cliffton, MD, showed that a greater propensity of blood clotting correlates with a higher probability for cancer metastasis, which is the spreading around of cancer in the body (Martin, 1977). By the way, this idea had first been proposed at around the mid 19th century (Trousseau, 1865; Marinho & Takagaki, 2008).

Blood clots develop because blood platelets become too numerous or very “sticky” (platelet aggregation). Agostino and Cliffton reasoned that cancer cells find a protective cover in blood clots by getting trapped among the sticky cells, making it difficult or impossible for the immune system to detect them (Agostino & Cliffton, 1962 & 1963). This process assists cancer cells in their growth, progression, and dispersion inside the body (Agostino & Cliffton, 1962 & 1963).

The link between clotting and metastasis is soundly corroborated (Boccaccio & Medico, 2006; Mousa, 2006; ten Cate & Falanga, 2008).

In a more recent research paper the author stated that:

“Hypercoagulation is documented in virtually all cancer types, [...], and is the second leading cause of death in cancer patients.” (Mousa, 2006)

In spite of the findings by Agostino and Cliffton decades ago, it is still better known that cancer cells can activate excessive coagulation (blood clotting by platelet aggregation), rather than that hypercoagulation assists and facilitates the progression of cancer into advanced metastasis (Mousa, 2006).

Notwithstanding, it establishes that one of the indirect tryptophan side effects, via serotonin, is the promotion of metastatic cancer.

Carcinoid tumors, or metastatic tumors, manufacture large quantities of serotonin and histamine (Cohen, 1971; Tsoukalas, et al., 2017). Patents with the carcinoid syndrome, which includes small malignant –albeit slowly growing– tumors in, customarily, the gastrointestinal tract (the rectum, appendix, pancreas, small intestine, etc.) along with liver metastasis, cardiovascular disturbances, diarrhea, and bronchoconstriction (leading to "asthma attacks"), have high blood serotonin levels (Dockerty, 1963; Cohen, 1971; Molina-Cerrillo, et al., 2016). In people afflicted with the carcinoid syndrome, most of the consumed tryptophan is being used for serotonin synthesis, unlike in healthy individuals where nearly all tryptophan is channeled into protein and niacin production (Cohen, 1971).

(Traditionally, a high blood serotonin reading is primarily an indicator of high serotonin formation –due to excess estrogen, a vitamin B6 deficiency, etc.– outside the central nervous system (“body serotonin” as opposed to "brain serotonin"), which can also be detected by a high urine level of 5-hydroxyindoleacetic acid (5-HIAA), a serotonin metabolite.)

Equally disturbing, a research investigation (Friedman, et al., 2009) that studied many types of pharmaceutical medications found, for instance, that Prozac and Paxil, two serotonin-activating drugs (SSRI antidepressants), are quite possibly carcinogenic (=cancer-causing).

The inflammatory nature of several of the breakdown substances of L-tryptophan, leads to one of the worst direct tryptophan side effects: the causation and promotion of cancer.

In the 1950s researchers demonstrated that specific metabolic tryptophan adducts and the addition of “unnatural” DL-tryptophan to the diet of test subjects cause bladder cancer in animals (Dunning, et al., 1950; Pipkin, et al., 1969). In other experiments the same cancer-causing tryptophan breakdown compounds were recovered after adding the “natural” L-tryptophan (Brown & Price, 1956).

At least some of these catabolic substances are highly mutagenic and, as mentioned, can induce liver cancer (Nemoto, et al., 1979; Yamazoe, et al., 1980 & 1981; Ashida, et al., 1998; Suzuki, et al., 2008). Certain tryptophan degradation substances can also form carcinogenic nitrosamines which have been shown to cause bladder cancer, including in humans (Cohen, et al., 1979; Watanabe, et al., 1979; Ohta, et al., 1983; Abdel-Tawab, et al., 1986; Watanabe, 1997; Chung & Gadupudi, 2011). Tryptophan metabolites are also involved in other types of cancers such as cervical cancer (Fotopoulou, et al., 2011).

Two of the mutagenic tryptophan catabolites, 3-amino-1, 4-dimethyl-5H-pyrido [4, 3-b]indole and 3-amino-1-methyl-5H-pyrido[4,3-b]indole, are widely present in the envirionment and have been found in cigarette smoke, airborne particles, rain water, and cooked food (Manabe & Wada, 1991). In a study on rats, 3-amino-1-methyl-5H-pyrido[4,3-b]indole significantly increased the incidence of liver and bladder cancer (Takahashi, et al., 1993). Smokers have an increased risk of bladder cancer (Brennan, et al., 2001) and probably of liver cancer too (HHS, 2004).

In addition, there are tryptophan side effects associated with existing cancer. Specifically, immune dysfunction has been connected to tryptophan side effects, enabling the malignancy's survival and promoting its progression.

Investigators observed that in malignant tumors several tryptophan metabolites (kynurenine, etc.), nurtured by the catabolizing enzymes indoleamine-2,3-dioxygenase (IDO) and tryptophan-2,3-dioxygenase (TDO), notably inhibit “antitumor immune responses” by inducing apoptosis (=cell suicide) in healthy cells of the immune system (Frumento, et al., 2002; Zamanakou, et al., 2007; Opitz, et al., 2011; Platten, et al., 2012). Tryptophan-derived kynurenine is actively involved in human brain cancers (Opitz, et al., 2011).

Thus, L-tryptophan is the only amino acid that is capable of causing cancer in humans (Peat, Fall 2006). The most likely way, besides through the nitrosamine-metabolite route, is by tryptophan's role as an estrogen-imitating agent (Peat, Spring 2009).

A moderate dose of 900mg/day of supplemental tryptophan, added to an experimental diet of six healthy women, increased these carcinogenic metabolites very significantly, compared to receiving only the experimental diet (Watanabe, et al., 1979). The excretion of the L-tryptophan metabolites corresponds proportionally to the dietary/supplemental intake (Brown & Price, 1956).

Based on that type of research data, some scientific scholars had advised to keep tryptophan supplementation at or below 1g (1000mg) per day, particularly in people who are chronically stressed, because of the creation of potentially elevated amounts of harmful tryptophan metabolites (South, 1996).

One of the pro-inflammatory, cell-toxic tryptophan catabolites, 3-hydroxykynurenine (3-HK), apart from its implication in human bladder cancer, also “has affinity for the pancreas” (Watanabe, 1997). Another harmful adduct or tryptophan poison, 3-amino-1,4-dimethyl-5H-pyrido[4,3-b]indole, caused an increase in invasive pancreatic cancer in a study on hamsters (Yoshimoto, et al., 1999).

Dogs excrete relatively large amounts of tryptophan metabolites and bladder cancer is rather common (Brown & Price, 1956). Cats excrete practically none of these catabolic substances and are almost free of bladder cancer (Brown & Price, 1956). Bladder cancer is relatively common in humans and people with bladder cancer excrete large doses of tryptophan degradation products after ingestion of the amino acid compared to control subjects without disease (Brown & Price, 1956; Searle, 1976). Yet, the excretion of large amounts of some tryptophan catabolites is mainly linked to a vitamin B6 deficiency, rather than to the incidence of bladder cancer (Birt, et al., 1987).

A deficiency of vitamin B6 seems to aggravate the synthesis of some of these injurious metabolites if an excess of L-tryptophan is ingested (Gerras, et al., 1977; Green, et al., 1980; Guilarte & Wagner, 1987; Chung & Gadupudi, 2011). Conversely, proper vitamin B6 status prevents the accumulation of tryptophan degradation products (Barichello, et al., 2014).

Because vitamin B6 and niacin (also named nicotinic acid, nicotinate, vitamin B3, or vitamin PP for Pellagra Preventis) serve “complementary” functions in at least one of the tryptophan metabolic pathways (Ellis & Presley, 1973), and one of the health benefits of niacin, an end product of the kynurenine pathway (Le Floc'h, et al., 2011), is that an increase of the vitamin also reduces tryptophan catabolites (Alifano, et al., 1964; Yaryura-Tobias, et al., 1977).

Insufficiencies of vitamin B2, B6, iron, or an amino acid imbalance reduce the conversion of tryptophan to niacin (Nagalski & Bryla, 2007) and instead help transfer the amino acid into serotonin via the intermediate substance 5-hydroxytryptophan (5-HTP), elevating the risk of tryptophan side effects from destructive metabolites and serotonin.

Some folks from the mainstream culture had referred to 5-HTP supplements and tryptophan products as “serotonin supplements” because of the popularized perception of these agents as serotonin-fueling substances. Others had also classified “herbal serotonin supplements” because certain herbs and botanicals (e.g., St. John's Wort, Garcinia Cambogia Extract) can act as serotonin boosters.

There are other tryptophan side effects from unfavorable interactions with certain substances or products.

Estrogen, as from Hormonal Replacement Therapy (HRT)/estrogen replacement therapy or the birth control pill, can increase certain tryptophan degradation chemicals, even without consuming additional L-tryptophan, by interfering with the metabolic pathways that convert tryptophan to vitamin B3 (Ellis & Presley, 1973). This positive relationship between estrogen and tryptophan catabolites was verified in both women and men (Ellis & Presley, 1973).

Estrogen can also increase serotonin (Murray & Pizzorno, 1998; Peat, Sept. 2012), mediated by (1) the hormone-induced shift from the tryptophan-niacin route to the tryptophan-serotonin path, and by (2) estrogen's boost of tryptophan hydroxylase, the rate-limiting enzyme in the production of serotonin from tryptophan (Gupta, et al., 2011).

It is reasonable to conclude that these biological events are contributing aspects in the promotion of breast cancer seen with the use of HRT (Rothenberg, 2005; Ravdin, et al., 2007). With the use of HRT, and the birth control pill, and during pregnancy and menopause, and while under stress, there is an increased need for vitamin B6 and vitamin B3 (Ellis & Presley, 1973; Hoffer, 1994). During pregnancy, for instance, the turn-over of tryptophan to niacin (niacin synthesis) is increased three times (Jacob & Swendseid, 1996).

Tangible vitamin B3 benefits, specifically niacinamide benefits, are the result. (Like niacin, niacinamide –also known as nicotinamide or nicotinic acid amide– is one of several different forms of vitamin B3). For instance, the apparent truism of a greater need for vitamin B3 during pregnancy is backed by the research finding that a higher blood concentration of nicotinamide in pregnant women had been found to strongly reduce the chance of developing atopic ezcema (a chronic skin condition) in their infants at 1 year of age (El-Heis, et al., 2016).

The degree of effectiveness of vitamin B6 to prevent the creation of (some) poisonous tryptophan decomposition products depends notably on its dose. Some empirical medical people had proposed that a proper vitamin B6 dosage is at least 30mg/day for more comprehensive protection in high-risk individuals (Ellis & Presley, 1973), and probably in people who supplement with tryptophan. (Those kinds of levels are very difficult to obtain with rich vitamin B6 foods, such as Shiitake mushrooms, Spirulina, liver, rice bran, wheat germ, beef, turkey, seafood, fresh tuna and fresh wild salmon, garlic, (sweet) potatoes, and certain seeds and nuts).

However... vitamin B6 (even in cases with an increased vitamin B6 dosage) doesn't prevent all tryptophan side effects.

Earlier in the article I alluded to one of the side effects of melatonin –the promotion of inflammation in individuals with rheumatoid arthritis. In a month-long, double-blinded, placebo-controlled study in patients with rheumatoid arthritis they received 50mg of a vitamin B6 supplement once per day (there are generally no vitamin B6 side effects from this quantity). People with rheumatoid arthritis tend to have a low vitamin B6 status compared to healthy subjects, not due to insufficient dietary intake of the vitamin or its excessive bodily excretion but due to the inflammatory property of their disease (Chiang, et al., 2005). The only vitamin B6 benefits recorded among the examined patients were the correction of vitamin B6 deficiency conditions and a reduction of xanthurenic acid (XA) yet their inflammation burden remained practically the same (Chiang, et al., 2005).

A randomized double-blind study (e.g., Newling, et al., 1995) revealed that a comparison between trial subjects who received a vitamin B6 supplement and those who got a placebo didn't notably change the rate of recurrent bladder cancer, despite that there were certain differences in the parameters of tryptophan metabolites between the two study groups.

Here are some reasons why taking a vitamin B6 supplement (and/or a vitamin B3 supplement) could fail to treat or prevent tryptophan side effects:

A Magnesium Deficiency

Certain tryptophan side effects, such as the generation of carcinogenic tryptophan metabolites, could be the result of a (marginal) magnesium deficit, rather than a pyridoxine deficiency (a lack of vitamin B6) (Seelig, 1979).

One of the interesting facts about magnesium is that the viability of vitamin B6 depends on an adequate magnesium supply in the body (Seelig, 1979), something which had been recognized in the medical literature well over half a century ago as pointed out by the renowned nutritionist Adelle Davis [1904-1974] in a 1965 publication (Davis, 1965). Thus, magnesium lowers the requirement for vitamin B6 (Davis, 1965). As an example, the damaging tryptophan metabolite xanthurenic acid can be reduced (to a certain degree) by increasing dietary magnesium intake alone, without any additional vitamin B6 (Davis, 1965).

In relation to carcinogenic tryptophan side effects, it means that one of the numerous health benefits of magnesium is the prevention of cancer (at least some cancer types).

Unfortunately, official scientific data have repeatedly revealed that over the last 100+ years a lack of magnesium (hypomagnesaemia) –mainly because of low dietary magnesium intake from eating processed, nutrient-poor food (e.g., “junk food”)– has been common among the American public (Davis, 1965; Altura, 1994; Costello, et al., 2016).

What contributes to, or aggravates, this bleak picture is that a variety of prescription drugs (e.g., antacids, the birth control pill) decrease magnesium levels (see my article "Facts About Dietary Supplements: Supplement-Drug Interactions" –direct link to it at the end of this article under Recommended next pages).

A Hydrochloric Acid Deficiency

Antacids not only lower magnesium content in the body but they oppose and neutralize hydrochloric acid by design (as their name clearly indicates), reducing stomach acidity.

A lack of hydrochloric acid (hypochlorhydria – low gastric acid or low stomach acid content) destroys the B vitamins (Davis, 1965), enhancing the possibility for undesired tryptophan side effects to manifest.

An Excess Of Vitamin D

High vitamin D levels (i.e., too much vitamin D), such as from regularly taking large-dose vitamin D supplements (vitamin D therapy), can lower the absorption of magnesium (Hathaway, 1962), running the risk of coming down with symptoms of magnesium deficiency.

One of the magnesium health benefits is the optimization of vitamin D metabolism because magnesium is required in the metabolism of vitamin D (Reddy & Edwards, 2017). Consequently, the use of high doses of vitamin D nutritionals expends more of the total magnesium pool in the body, making less of it available for its many other biological functions and applications. Over time, this magnesium depletion from taking vitamin D supplements at high doses can result in a systemic chronic magnesium deficiency (Reddy & Edwards, 2017).

As aforedelineated on magnesium properties, a deficiency of magnesium negatively affects the physiology of vitamin B6. And a shortfall of vitamin B6, as aforestated, can manifest in tryptophan side effects, notably the augmentation of cytotoxic tryptophan metabolites (Lepkovsky, et al., 1943; Porter, et al., 1948; Gerras, et al., 1977; Green, et al., 1980; Guilarte & Wagner, 1987; Chung & Gadupudi, 2011; Barichello, et al., 2014).

A Metabolic Disturbance By Tryptophan Derivatives

There are other scientific observations that suggest to not rely solely and faithfully on vitamin B6 for the prevention of (all) tryptophan side effects.


Because beyond the scope of B6 vitamin benefits such as the nutrient's modulating action on L-tryptophan...

...serotonin and melatonin –alongside with tryptophan metabolites (Kaminsky, et al., 1991)– interfere and inhibit the energy-creating metabolic processes such as mitochondrial cell respiration and thyroid function (Mueller, et al., 1976; Rom-Bugolavskaia, et al., 1997; Wright, et al., 1997 & 2000; Peat, Fall 2006, Spring & Summer 2009).

Animal experiments demonstrated that one of the side effects of melatonin (the so-called "body clock hormone" or ”the hormone of darkness”) is its dampening action on cellular energy output (Reyes-Toso, et al., 2003 & 2006; López, et al., 2009), and human studies (e.g., Carman, et al., 1976; Murphy, et al., 1996; Satoh & Mishima, 2001) showed that melatonin, even at a low dose of 0.5mg, decreases body temperature -indicative of metabolic interference.

Another denotation of melatonin's “down-regulating” activities upon the human metabolism is that sleeping for extended periods in total or near complete darkness, which naturally stimulates melatonin synthesis, decreased melatonin output (Danilenko, et al., 2009), suggesting a systemic defensive biological reaction of the organism to prolonged exposure of the substance.

The basic anti-metabolic effect of serotonin, melatonin and tryptophan promotes fatigue and lowers endurance (Peat, Spring 2009), and may be involved in the link between fibromyalgia and tryptophan, and probably in many, if not most, negative tryptophan side effects. Melatonin, for example, is elevated in people with fibromyalgia (Korszun, et al., 1999), and chronic fatigue syndrome (Knook, et al., 2000). Numerous people reported feeling tired and groggy in the morning, or throughout the day, after taking a melatonin supplement prior to going to sleep the night before –symptoms of what some people call a “melatonin hangover”.

Many people have noticed significant weight gain after taking melatonin supplements for some time. The large use of tryptophan, melatonin, and serotonin-activating agents (e.g., SSRIs) may be a contributing factor in the obesity epidemic, which is most prominent in the US with its great consumption of these substances.


None other than a Two-time Nobel Prize Winner, Otto H. Warburg, PhD, MD, (1883-1970) proved a long time ago (in the 1920s/30s) that the development of cancer begins with “a respiratory defect” in normal cells:

“Cancer cells originate from normal body cells […]. [...] first [there] is the [...] injuring of respiration […].” (Warburg, 1956) [explanation added]


“Because no cancer cell exists, the respiration of which is intact, it cannot be disputed that cancer could be prevented if the respiration of the body cells would be kept intact.” (Otto H. Warburg, PhD, MD, in 1966)

Many people, for example the biologist Raymond Peat, PhD, and the cancer researcher Thomas N. Seyfried, PhD, have subsequently written about, or extended on, Warburg's concepts, in some cases spanning over several decades already.

Seyfried, for example, provided overwhelming evidence that cancer is a metabolic disease due to respiratory/mitochondrial dysfunction (Seyfried, 2012).

Analogous and overlapping findings come from Peat's research...

Serotonin, for which tryptophan is the exclusive precursor of, increases the stress hormone cortisol (Peat, Nov. 2008). Cortisol and cortisone interfere with cellular energy metabolism (Simon, et al., 1998; Peat, Nov. 2008).

Melatonin, too, increases cortisol in older women (Cagnacci, et al., 1995) and cortisol is increased in aged, healthy people of both genders (Ferrari, et al., 1995). Since tryptophan is the most fundamental precursor for both serotonin and melatonin, this line of evidence suggests that the amino acid shouldn't be raised (with advancing age) to minimize the fostering of tryptophan side effects from serotonin-melatonin-cortisol ramifications.

When the mitochondrial respiration of cells is impaired (as from cortisol, for instance) lactic acid will form which in itself suppresses cellular energy production (Peat, Sept. 2008). Serotonin can raise lactate levels (by the activation of aerobic glycolysis) and lowers the principal energy substrate, ATP, in the brain and skin (Koren-Schwartzer, et al., 1994; Ashkenazy-Shahar & Beitner, 1997; Assouline-Cohen, et al., 1998). Stress too, whether physical or psychological in origin, elevates lactate levels (Uehara, et al., 2005).

Lactic acid promotes mitogenesis (the initiation of cell division) and increased levels of lactate is a core feature of cancer (Peat, Sept. 2008). Even a small increase of serotonin has been shown to stimulate mitogenesis (Zolkowska, et al., 2006).

Besides serotonin's amplification of lactate, it also directly inhibits mitochondrial enzymes of respiration (Medvedev, 1990; Medvedev & Gorkin, 1991). Analogous to serotonin side effects on cell energy production are the specific tryptophan side effects from nitrosamines. That is, nitrosamines restrict the blood circulation's ability to transport oxygen (Martin, 1977). Oxygen, of course, is essential for the efficient generation of energy (oxidative respiration).

One of the health benefits of vitamin C is that it can effectively inhibit the formation of cancer-causing nitrosamines from tryptophan decomposition products (Schlegel, et al., 1970; Schlegel, 1975; Tannenbaum, 1989; Tannenbaum, et al., 1991), thereby greatly reducing the risk of cellular DNA damage (Arranz, et al., 2007). Vitamin E, too, appears to have this restrictive impact on nitrosamines (Wagner, et al., 1985).

Although these vital nutrients can restrict the dangers from a tryptophan poison (metabolite), they appear to have no noticable influence on the energy-restrictive activities of serotonin.

Bottom line on tryptophan side effects from tampering with cellular energy metabolism?

Because of the synthesis of serotonin and melatonin from tryptophan all of these substances are factors in harmful energy-disruptive events. And because the chronic tampering of metabolic energy processes (as could be expected from prolonged intake of tryptophan pills) will decrease cellular metabolism (Mela, et al., 1976), the use of a supplement of tryptophan seems ill adviced.

Especially since the addition of supplemental vitamin B6, vitamin C, and other nutrients do not provide full-spectrum protection against all tryptophan side effects from the damaging tryptophan degradation elements, and other tryptophan-derived culprits of carcinogenesis.

Tryptophan Side Effects:
Increased Aging & Mortality

What is tryptophan used for?

As an element of protein, the body directs the tryptophan amino acid primarily into the manufacturing of protein (to maintain the body structure, for instance), while the second most utilized metabolic application is for kynurenine synthesis (Richard, et al., 2009).

As a constituent of protein production, L-tryptophan is essential for growth (Segall & Timiras, 1976; De Marte & Enesco, 1986; Sidransky, 2001). Thus, the amino acid has a most vital role predominantly during marked times of development and maturation which, for humans, occurs in the early period of life.

Similar findings have been reported with animals. Older animals, particularly females, seem less prone to experiencing tryptophan side effects incurred from a deficiency of the amino acid, such as reduced growth or diminished skeletal development, than young animals (Moehn, et al., 2012).

Apparently, the essential human requirement for L-tryptophan seems to diminish with age (Peat, Fall 2009). Elderly people have less tryptophan in their blood than young people (Caballero, et al., 1991; Sarwar, et al., 1991). This makes the addition of tryptophan supplements in (advancing) adulthood proportionally redundant, and quite possibly even detrimental.


Studies on animals (e.g., Segall & Timiras, 1976; De Marte & Enesco, 1986; Ooka, et al., 1988) demonstrated that depriving young animals of tryptophan increased mortality, while the deficit of L-tryptophan decreased mortality in older animals.

In terms of lifespan-restraining tryptophan side effects, study data have affirmed that impaired cellular tryptophan uptake, decreasing its intracellular content (leading to a relative lack of tryptophan), is a pro-longevity mechanism (He, et al., 2014).

Besides extending longevity, a tryptophan-deficient diet also increased the animals resistance to stressors, reduced their risk of developing tumors, and extended their reproductive ability, and preserved their youthful outward appearance longer, all of which is analogous to the beneficial effects observed from experiments with calorie restriction (Segall & Timiras, 1976; Segall, 1977).

Age-associated chronic degenerative diseases, such as cancer, brain disorders, or heart disease, are linked to tryptophan side effects.

Xanthurenic acid (XA), an inflammatory diabetogenic tryptophan degradation item (Kotake, 1955; Davis, 1965), “accumulates in organs with aging” (Malina, et al., 2001). Likewise, and as aforecited, one of the insidious tryptophan side effects is that toxic degradation adducts, such as kynurenic acid (KYNA) produced from kynurenine, increase with aging (Kepplinger, et al., 2005; Reyes Ocampo, et al., 2014).

A reasonable assumption is that this is the result, in part, of the stimulating action of:

  • estrogen, which increases in both women and men with age (Peat, 1997) and recruits some tryptophan degradation elements (Ellis & Presley, 1973), and
  • inflammatory chemicals, such as the cytokine interleukin-6 (IL-6), that activate the kynurenine pathway, increasing the production of noxious 3-HK (Johansson, et al., 2013) and KYNA (Schwieler, et al., 2014), as aging goes hand in hand with increasing chronic inflammation and many age-related degenerative pathologies (Naito & Komuro, 2013; Pawelec, et al., 2014).

And, exacerbating these two age-related erosive events, some catabolites of tryptophan can lead to the formation of mutagenic nitrosamines or the activation of an immunosuppressive receptor (which is usually triggered by toxicants such as xenobiotics), promoting carcinogenesis (Mezrich, et al., 2010; Chung & Gadupudi, 2011).

The consumption of a supplement of tryptophan will likely nurture or augment these disastrous age-associated disease states, by raising injurious tryptophan derivatives (particularly in the presence of a vitamin B6 deficiency, an insufficiency of stomach acid, a magnesium deficit, and a vitamin B3 deficiency).

Furthermore, tryptophan side effects in regards to greater mortality were shown in animal experiments (e.g., Catrina, et al., 2001) using melatonin, whereas the study authors cautioned:

“[...] melatonin had a deleterious effect on the survival rate raising the question whether it is correct to assume that the hormone shows lack of adverse reactions.” [emphasis added]

In regard to serotonin's involvement in the promotion of higher mortality, one of its anti-longevity effects is conceivably the reabsorption of phosphate (a pro-inflammatory chemical) by the kidneys since klotho, an anti-aging protein, facilitates the excretion of phosphate from the kidneys (Peat, Nov. 2012).

Since tryptophan, serotonin, and melatonin meddle with basic energy production in cells, and since metabolic efficiency and functionality decreases proportionally with aging (Fannin, et al., 1999; O'Toole, et al., 2010) due to various factors, it seems coherent in biological terms that these substances are less prevalent, thus less “essential” or needed, in older people, as a further decrease of an already suboptimal general metabolic working order will aggravate physiological function systematically, increase the risk for disease (as exemplified and foreshadowed with tryptophan side effects), promote the aging process, and explains the increased mortality related to the administration of these substances.

Several tryptophan side effects, such as tryptophan's carcinogenic activities, the deterioration of metabolic energy function, and the promotion of hypertension, can rather readily account for a greater death rate.

Final Comments On The Various Described Tryptophan Side Effects

“[...] tryptophan is one of the most toxic amino acids.” (Okuno, et al., 2008)

It is evident that distressing tryptophan side effects are not exactly non-existent.

While insufficient knowledge exists about the upper tolerable intake of L-tryptophan for humans, enough scientific data have been generated to make valid generalizations about its degree of toxicity. It warrants caution.

Interestingly, glycine, another amino acid, may be the ideal antagonist to many unwelcoming L-tryptophan side effects (Peat, Fall 2006), alongside vitamin B6.

Speaking of vitamin benefits...

The use of multivitamin supplements has also a general protective action. For example, during the tryptophan EMS disaster in 1989 those people who took multivitamin supplements prior to consuming the tainted Showa Denko amino acid supplement, had a substantially lower risk of experiencing severe EMS-tryptophan side effects (Hatch & Goldman, 1993).

In people with EMS, harmful degradation substances of tryptophan are elevated due to a disturbance in tryptophan metabolism (Varga, et al., 1993). It is fair to presume that the use of multivitamin supplements will (partly) correct this biological imbalance or defect, and consequently ameliorate (in part) certain tryptophan side effects, even from EMS. After all, a deficiency of vitamin B6, for instance, leads to the biosynthesis and accumulation of noxious L-tryptophan decomposition products (e.g., indolic amines), exacerbating the disturbances in tryptophan metabolism (Lepkovsky, et al., 1943; Porter, et al., 1948; Gerras, et al., 1977; Green, et al., 1980; Guilarte & Wagner, 1987; Chung & Gadupudi, 2011; Barichello, et al., 2014).

Critical individual differences in the mode and utilization of nutritional supplements, therefore, may provide part of the explanation that only a relative minor pool of people (1 in 250 [Beisler, 2000]) fell ill with EMS among the many consumers who ingested the L-tryptophan tainted by Showa Denko (Murray & Pizzorno, 1998).

Still, these beneficial findings to avert or attenuate tryptophan side effects from injurious impact should not be misconstrued as some fundamental approval to ingest moderate-high doses of individual L-tryptophan supplements on a longterm schedule.

In the end, the research finding that L-tryptophan, 5-hydroxy tryptophan, and serotonin can all block a carrier substance of many compounds, including L-glycine (Metzner, et al., 2005; Frølund, et al., 2010; Edwards, et al., 2011), and that degradation elements of tryptophan can impair glycine receptors in the brain (Stone, 1993), plus tryptophan's inflammatory-degenerative activities via serotonin, suggests to minimize the intake of moderate-high doses of this amino acid by single-element supplementation to avoid adverse long term effects of tryptophan.

Nutritional Supplements And Side Effects

Conclusions About Tryptophan Side Effects

“The use of supplements of tryptophan, hydroxytryptophan, or of the serotonin promoting antidepressant drugs, seems to be biologically inappropriate.” (Raymond Peat, PhD, Biologist, in 2009)

Serotonin “has a basic growth regulating and defensive function” (Ray Peat, PhD, Biologist, Personal Correspondence, 17-April-2011). This explains why normally about 95% of it is found in the (large) intestine (Donaldson & Gray, 1959; Peat, March 2011) where a huge number of potentially harmful bacteria dwell.

But from a biological point of view, it appears that serotonin's defensive combative feature isn't generally required in the rest of the body because only around 1-5% of serotonin is found in the brain and equally little serotonin is made from L-tryptophan (Sjoerdsma, et al., 1956; Glenmullen, 2000; Richard, et al., 2009; Peat, March 2011). Eating high tryptophan foods (dietary tryptophan) generally yields poor results in terms of raising brain serotonin (read "Tryptophan For Sleep: One Of The Good Natural Sleeping Aids?" –see 'Recommended next page(s)' at the end of this article for a direct link to it).

In all probability, serotonin's presence at increased amounts outside the intestine exerts suppressive destabilizing activities, especially over time. For instance, its increased levels found in disturbances of cardiovascular circulation appears to be testimony of that. In situation of chronic injury serotonin exerts detrimental effects as in abnormal wound healing, the development of tissue fibrosis, and impaired organ regeneration (Mann & Oakley, 2012). A plausible implication thereof is that the continuous, sustained upregulation or activation of the substance (by artificial means) may lead to various consequential serotonin/tryptophan side effects as aforementioned.

Therefore, the truth about tryptophan appears to be that, generally, this amino acid shouldn't be consumed as an individual product on a prolonged basis because of its plentiful presence in the environment and due to its inherent higher risk profile. (In Side Effects Of Dietary Supplements –Top 10 Tips To Avoid Them I elaborated on why the intake of individual single nutrient supplements tends to increase the health risks from dietary supplements.)

The consumption of L-tryptophan as a single-element supplement (particularly at around 1g or more per day) is problematic on a longterm basis, and increasingly so with things like:

  • advancing age,
  • poor protein nutrition (inadequate intake of high protein foods) and sub-optimal micronutrient intake,
  • a deficit of hydrochloric acid (a high pH of the stomach acid liquid),
  • inadequate thyroid function,
  • increased stress levels, and
  • the concurrent intake of SSRI antidepressants,

because the habit will probably assist in directing the body's physiology into an inflammatory-degenerative state, thereby increasing the risk of morbidity and mortality.

As a result...

... the omission of adding this serotonin/melatonin-producing single amino acid will likely forestall a host of potentially harmful tryptophan side effects.

(Originally published: ca. July-2012 | This is an updated version)

(To stay up-to-date on the release of my very latest articles subscribe to my Free Newsletter)

Recommended next page(s):

Article Index On Side Effects Of
Dietary Supplements And Risks



  • Abbott NJ, “Inflammatory mediators and modulation of blood-brain barrier permeability”, Cell Mol Neurobiol. 2000 Apr;20(2):131-47.
  • Abdel-Tawab GA, Aboul-Azm T, Ebied SA, el-Toukhy MA, Abdel-Hamied HA, el- Kholy ZA, el-Sharaky AS, “The correlation between certain tryptophan metabolites and the N-nitrosamine content in the urine of bilharzial bladder cancer patients”, J Urol. 1986 Apr;135(4):826-30.
  • Ables AZ, Nagubilli R, “Prevention, recognition, and management of serotonin syndrome”, Am Fam Physician. 2010 May 1;81(9):1139-42.
  • Agostino D, Cliffton EE, “Factors affecting the development of metastatic cancer. Effect of alterations in clottin mechanism”, Cancer. 1962 Mar- Apr;15:276-83.
  • Agostino D, Cliffton EE, “Decrease in pulmonary metastases: potentiation of nitrogen mustard effect by heparin and fibrinolysin”, Ann Surg. 1963 Mar;157:400-8.
  • Aleksandrin VV, Tarasova NN, Tarakanov IA, “Effect of serotonin on respiration, cerebral circulation, and blood pressure in rats”, Bull Exp Biol Med. 2005 Jan;139(1):64-7.
  • Alifano A, Papa S, Tancredi F, Elicio MA, Quagliariello E, “Tryptophan-Nicotinic Acid Metabolism In Patients With Tumors Of The Bladder And Kidney”, Br J Cancer. 1964 Jun;18:386-9.
  • Allport J, “Incidence and prevalence of medication-induced osteoporosis: evidence-based review”, Curr Opin Rheumatol. 2008 Jul;20(4):435-41.
  • Altura BM, “Introduction: importance of Mg in physiology and medicine and the need for ion selective electrodes”, Scand J Clin Lab Invest Suppl. 1994;217:5-9.
  • Arranz N, Haza AI, García A, Rafter J, Morales P, “Protective effect of vitamin C towards N-nitrosamine-induced DNA damage in the single-cell gel electrophoresis (SCGE)/HepG2 assay”, Toxicol In Vitro. 2007 Oct;21(7):1311- 7. Epub 2007 Apr 14.
  • Ashida H, Shiotani B, Adachi H, Hashimoto T, Kanazawa K, Danno G, “Tryptophan pyrolysis products, Trp-P-1 and Trp-P-2 induce apoptosis in primary cultured rat hepatocytes”, Biosci Biotechnol Biochem. 1998 Nov;62(11):2283-7.
  • Ashkenazy-Shahar M, Beitner R, “Serotonin decreases cytoskeletal and cytosolic glycolytic enzymes and the levels of ATP and glucose 1,6- bisphosphate in skin, which is prevented by the calmodulin antagonists thioridazine and clotrimazole”, Biochem Mol Med. 1997 Apr;60(2):187-93.
  • Assouline-Cohen M, Ben-Porat H, Beitner R, “Activation of membrane skeleton- bound phosphofructokinase in erythrocytes induced by serotonin”, Mol Genet Metab. 1998 Mar;63(3):235-8.
  • Barichello T, Generoso JS, Simões LR, et al., "Vitamin B6 prevents cognitive impairment in experimental pneumococcal meningitis", Exp Biol Med (Maywood). 2014 Oct;239(10):1360-5.
  • Beisler JH, "Dietary Supplements and Their Discontents: FDA Regulation and the Dietary Supplement Health and Education Act of 1994," Rutgers Law Journal, Winter 2000
  • Beitner R, Frucht H, Kaplansky M, “Changes in the levels of glucose 1,6- diphosphate and cyclic GMP, and in the activities of phosphofructokinase and phosphoglucomutase induced by serotonin in muscle”, Int J Biochem. 1983;15(7):935-40.
  • Berg JM, Tymoczko JL, Stryer L, "Biochemistry", 5th Edition, 2002
  • Bichler J, Cavin C, Simic T, Chakraborty A, Ferk F, Hoelzl C, Schulte-Hermann R, Kundi M, Haidinger G, Angelis K, Knasmüller S, “Coffee consumption protects human lymphocytes against oxidative and 3-amino-1-methyl-5H- pyrido[4,3-b]indole acetate (Trp-P-2) induced DNA-damage: results of an experimental study with human volunteers”, Food Chem Toxicol. 2007 Aug;45(8):1428-36. Epub 2007 Feb 12.
  • Birt DF, Julius AD, Hasegawa R, St John M, Cohen SM, “Effect of L-tryptophan excess and vitamin B6 deficiency on rat urinary bladder cancer promotion”, Cancer Res. 1987 Mar 1;47(5):1244-50.
  • Boccaccio C, Medico E, “Cancer and blood coagulation”, Cell Mol Life Sci. 2006 May;63(9):1024-7.
  • Braverman ER, “The Healing Nutrients Within”, 3rd Edition, 2003
  • Brambilla P, Perez J, Barale F, Schettini G, Soares JC, “GABAergic dysfunction in mood disorders”, Mol Psychiatry. 2003 Aug;8(8):721-37, 715.
  • Breggin PR, Breggin GR, “Talking Back To Prozac: What Doctors Aren't Telling You About Today's Most Controversial Drug”, 1994
  • Breggin PR, "The Antidepressant Fact Book: What Your Doctor Won’t Tell You About Prozac, Zoloft, Paxil, Celexa, and Luvox", 2001
  • Brennan P, Bogillot O, Greiser E, Chang-Claude J, Wahrendorf J, Cordier S, Jöckel KH, Lopez-Abente G, Tzonou A, Vineis P, Donato F, Hours M, Serra C, Bolm-Audorff U, Schill W, Kogevinas M, Boffetta P, “The contribution of cigarette smoking to bladder cancer in women (pooled European data)”, Cancer Causes Control. 2001 Jun;12(5):411-7.
  • Brown RR, Price JM, “Quantitative studies on metabolites of tryptophan in the urine of the dog, cat, rat, and man”, J Biol Chem. 1956 Apr;219(2):985- 97.
  • Bucci L, Ioppolo A, Chiavarelli R, Bigotti A, “The central-nervous-system toxicity of long-term oral administration of L-tryptophan to porto-caval-shunted rats”, Br J Exp Pathol. 1982 Jun;63(3):235-41.
  • Burwell T, Stith R (Directors), “Making a Killing: The Untold Story of Psychotropic Drugging”, Documentary, 2008
  • Caballero B, Gleason RE, Wurtman RJ, “Plasma amino acid concentrations in healthy elderly men and women”, Am J Clin Nutr. 1991 May;53(5):1249-52.
  • Cagnacci A, Soldani R, Yen SS, “Melatonin enhances cortisol levels in aged but not young women”, Eur J Endocrinol. 1995 Dec;133(6):691-5.
  • Calarge CA, Zimmerman B, Xie D, Kuperman S, Schlechte JA, “A cross-sectional evaluation of the effect of risperidone and selective serotonin reuptake inhibitors on bone mineral density in boys”, J Clin Psychiatry. 2010 Mar;71(3):338-47.
  • Calarge CA, Ellingrod VL, Zimmerman B, Bliziotes MM, Schlechte JA, “Variants of the serotonin transporter gene, selective serotonin reuptake inhibitors, and bone mineral density in risperidone- treated boys: a reanalysis of data from a cross-sectional study with emphasis on pharmacogenetics”, J Clin Psychiatry. 2011 Dec;72(12):1685-90.
  • Carman JS, Post RM, Buswell R, Goodwin FK, “Negative effects of melatonin on depression”, Am J Psychiatry. 1976 Oct;133(10):1181-6.
  • Catrina SB, Curca E, Catrina AI, Radu C, Coculescu M, “Melatonin shortens the survival rate of Ehrlich ascites-inoculated mice”, Neuro Endocrinol Lett. 2001 Dec;22(6):432-4.
  • Chiang EP, Selhub J, Bagley PJ, Dallal G, Roubenoff R, “Pyridoxine supplementation corrects vitamin B6 deficiency but does not improve inflammation in patients with rheumatoid arthritis”, Arthritis Res Ther. 2005;7(6):R1404-11.
  • Chung KT, Gadupudi GS, “Possible roles of excess tryptophan metabolites in cancer”, Environ Mol Mutagen. 2011 Mar;52(2):81-104. doi: 10.1002/em.20588.
  • Cohen RM, "Factors responsible for the carcinoid spectrum. A review", Calif Med. 1971 Jan;114(1):1-6.
  • Cohen SM, Arai M, Jacobs JB, Friedell GH, “Promoting effect of saccharin and DL-tryptophan in urinary bladder carcinogenesis”, Cancer Res. 1979 Apr;39(4):1207-17.
  • Costello R, Wallace TC, Rosanoff A, "Magnesium", Adv Nutr. 2016 Jan 15;7(1):199-201. doi: 10.3945/an.115.008524. Print 2016 Jan.
  • Crist WE, “Letter to Dr. William Rolleston, Chairman of the Life Sciences Network”, May 16, 2005
  • Cunliffe A, Obeid OA, Powell-Tuck J, “A placebo controlled investigation of the effects of tryptophan or placebo on subjective and objective measures of fatigue”, Eur J Clin Nutr. 1998 Jun;52(6):425-30.
  • Cutolo M, Villaggio B, Otsa K, Aakre O, Sulli A, Seriolo B, “”Altered circadian rhythms in rheumatoid arthritis patients play a role in the disease's symptoms”, Autoimmun Rev. 2005 Nov;4(8):497-502. Epub 2005 Jun 13.
  • Danilenko KV, Plisov IL, Wirz-Justice A, Hebert M, “Human retinal light sensitivity and melatonin rhythms following four days in near darkness”, Chronobiol Int. 2009 Jan;26(1):93-107.
  • Davis A, "Let's Get Well", 1965
  • DeCamp JW, “The Franklin Cover-Up: Child Abuse, Satanism, And Murder In Nebraska”, 2nd Edition, 4th Printing, 2006 [https://tinyurl.com/yykvopqq | https://tinyurl.com/y5kef2hg; accessed 28-July-2019]
  • De Marte ML, Enesco HE, “Influence of low tryptophan diet on survival and organ growth in mice”, Mech Ageing Dev. 1986 Oct;36(2):161-71.
  • Diamond DM, Ravnskov U, "How statistical deception created the appearance that statins are safe and effective in primary and secondary prevention of cardiovascular disease", Expert Rev Clin Pharmacol. 2015 Feb 12:1-10. [Epub ahead of print]
  • Diem SJ, Blackwell TL, Stone KL, Yaffe K, Haney EM, Bliziotes MM, Ensrud KE, “Use of antidepressants and rates of hip bone loss in older women: the study of osteoporotic fractures”, Arch Intern Med. 2007 Jun 25;167(12):1240-5.
  • Dockerty MB, "Carcinoid Tumors", Calif Med. 1963 Sep;99:157-60.
  • Donaldson RM Jr, Gray SJ, “Serotonin and the 5-hydroxyindole pathway of tryptophan metabolism”, AMA Arch Intern Med. 1959 Aug;104(2):330-8.
  • Dubocovich ML, Mogilnicka E, Areso PM, “Antidepressant-like activity of the melatonin receptor antagonist, luzindole (N-0774), in the mouse behavioral despair test”, Eur J Pharmacol. 1990 Jul 3;182(2):313-25.
  • Dunning WF, Curtis MR, Maun ME, “The effect of added dietary tryptophane on the occurrence of 2-acetylaminofluorene-induced liver and bladder cancer in rats”, Cancer Res. 1950 Jul;10(7):454-9.
  • Edenharder R, Kerkhoff G, Dunkelberg H, “Effects of beta-carotene, retinal, riboflavin, alpha-tocopherol and vitamins C and K1 on sister-chromatid exchanges induced by 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2) and cyclophosphamide in human lymphocyte cultures”, Food Chem Toxicol. 1998 Nov;36(11):897-906.
  • Edwards N, Anderson CM, Gatfield KM, Jevons MP, Ganapathy V, Thwaites DT, “Amino acid derivatives are substrates or non-transported inhibitors of the amino acid transporter PAT2 (slc36a2)”, Biochim Biophys Acta. 2011 Jan;1808(1):260-70.
  • El-Heis S, Crozier SR, Robinson SM, et al., "Higher maternal serum concentrations of nicotinamide and related metabolites in late pregnancy are associated with a lower risk of offspring atopic eczema at age 12 months", Clin Exp Allergy. 2016 Oct;46(10):1337-43. doi: 10.1111/cea.12782.
  • Ellis JM, Presley J, “Vitamin B6 -The Doctor's Report”, Harper & Row, 1973
  • Erhardt S, Olsson SK, Engberg G, “Pharmacological manipulation of kynurenic acid: potential in the treatment of psychiatric disorders”, CNS Drugs. 2009;23(2):91-101.
  • Fannin SW, Lesnefsky EJ, Slabe TJ, Hassan MO, Hoppel CL, “Aging selectively decreases oxidative capacity in rat heart interfibrillar mitochondria”, Arch Biochem Biophys. 1999 Dec 15;372(2):399-407.
  • Feksa LR, Latini A, Rech VC, Wajner M, Dutra-Filho CS, de Souza Wyse AT, Wannmacher CM, “Promotion of oxidative stress by L-tryptophan in cerebral cortex of rats”, Neurochem Int. 2006 Jul;49(1):87-93. Epub 2006 Feb 23.
  • Ferrari E, Magri F, Dori D, Migliorati G, Nescis T, Molla G, Fioravanti M, Solerte SB, “Neuroendocrine correlates of the aging brain in humans”, Neuroendocrinology. 1995 Apr;61(4):464-70.
  • Fiddaman B, “Hashtag Backfires On Twitter”, Fiddaman Blog, www.fiddaman.blogspot.com, 5-May-2019 [http://archive.is/dZqQW | https://tinyurl.com/y6dbanas; accessed 26-Sep-2019]
  • Forrest CM, Mackay GM, Stoy N, Egerton M, Christofides J, Stone TW, Darlington LG, “Tryptophan loading induces oxidative stress”, Free Radic Res. 2004 Nov;38(11):1167-71.
  • Fotopoulou C, Sehouli J, Pschowski R, VON Haehling S, Domanska G, Braicu EI, Fusch G, Reinke P, Schefold JC, “Systemic changes of tryptophan catabolites via the indoleamine-2,3-dioxygenase pathway in primary cervical cancer”, Anticancer Res. 2011 Aug;31(8):2629-35.
  • Friedman GD, Udaltsova N, Chan J, Quesenberry CP Jr, Habel LA, “Screening pharmaceuticals for possible carcinogenic effects: initial positive results for drugs not previously screened”, Cancer Causes Control. 2009 Dec;20(10):1821-35.
  • Frølund S, Holm R, Brodin B, Nielsen CU, “The proton-coupled amino acid transporter, SLC36A1 (hPAT1), transports Gly-Gly, Gly-Sar and other Gly-Gly mimetics”, Br J Pharmacol. 2010 Oct;161(3):589-600.
  • Frumento G, Rotondo R, Tonetti M, Damonte G, Benatti U, Ferrara GB, “Tryptophan-derived catabolites are responsible for inhibition of T and natural killer cell proliferation induced by indoleamine 2,3-dioxygenase”, J Exp Med. 2002 Aug 19;196(4):459-68.
  • Gaddum JH, Hameed KA, “Drugs which antagonize 5-hydroxytryptamine”, Br J Pharmacol Chemother. 1954 Jun;9(2):240-8.
  • Gagné AM, Danilenko KV, Rosolen SG, Hébert M, “Impact of oral melatonin on the electroretinogram cone response”, J Circadian Rhythms. 2009 Nov 19;7:14.
  • Gerras C, et al. (Editors), “The Complete Book Of Vitamins”, Rodale Press, 1977
  • Glenmullen J, “Prozac Backlash: Overcoming the Dangers of Prozac, Zoloft, Paxil, and Other Antidepressants With Safe, Effective Alternatives”, 2000
  • Gøtzsche PC, "Deadly Medicines and Organised Crime: How Big Pharma Has Corrupted Healthcare", 2013
  • Green AR, Aronson JK, Curzon G, Woods HF, “Metabolism of an oral tryptophan load. I: Effects of dose and pretreatment with tryptophan”, Br J Clin Pharmacol. 1980 Dec;10(6):603-10.
  • Greenwood MH, Lader MH, Kantameneni BD, Curzon G, “The acute effects of oral (--)-tryptophan in human subjects”, Br J Clin Pharmacol. 1975 Apr;2(2):165-72.
  • Grome JJ, Harper AM, “The effects of serotonin on local cerebral blood flow”, J Cereb Blood Flow Metab. 1983 Mar;3(1):71-7.
  • Gross B, Ronen N, Honigman S, Livne E, “Tryptophan toxicity--time and dose response in rats”, Adv Exp Med Biol. 1999;467:507-16.
  • Guilarte TR, Wagner HN Jr, “Increased concentrations of 3-hydroxykynurenine in vitamin B6 deficient neonatal rat brain”, J Neurochem. 1987 Dec;49(6):1918-26.
  • Guilarte TR, Block LD, Wagner HN Jr, “The putative endogenous convulsant 3- hydroxykynurenine decreases benzodiazepine receptor binding affinity: implications to seizures associated with neonatal vitamin B-6 deficiency”, Pharmacol Biochem Behav. 1988 Jul;30(3):665-8.
  • Gupta S, McCarson KE, Welch KM, Berman NE, “Mechanisms of pain modulation by sex hormones in migraine”, Headache. 2011 Jun;51(6):905-22. doi: 10.1111/j.1526-4610.2011.01908.x.
  • Hajdu MA, McElmurry RT, Heistad DD, Baumbach GL, “Effects of aging on cerebral vascular responses to serotonin in rats”, Am J Physiol. 1993 Jun;264(6 Pt 2):H2136-40.
  • Haney EM, Chan BK, Diem SJ, Ensrud KE, Cauley JA, Barrett-Connor E, Orwoll E, Bliziotes MM; for the Osteoporotic Fractures in Men Study Group, “Association of low bone mineral density with selective serotonin reuptake inhibitor use by older men”, Arch Intern Med. 2007 Jun 25;167(12):1246-51.
  • Haney EM, Warden SJ, Bliziotes MM, “Effects of selective serotonin reuptake inhibitors on bone health in adults: time for recommendations about screening, prevention and management?”, Bone. 2010 Jan;46(1):13-7.
  • Hatch DL, Goldman LR, “Reduced severity of eosinophilia-myalgia syndrome associated with the consumption of vitamin-containing supplements before illness”, Arch Intern Med. 1993 Oct 25;153(20):2368-73.
  • Hathaway ML, “Magnesium in human nutrition”, Home Econ. Res., Rep. No. 19., US Dept. Agric. (USDA), Aug. 1962
  • Hattori M, Kotake Y, Kotake Y, “Studies on the urinary excretion of xanthurenic acid in diabetics”, Acta Vitaminol Enzymol. 1984;6(3):221-8.
  • Hawlina M, Jenkins HG, Ikeda H, “Diurnal variations in the electroretinographic c-wave and retinal melatonin content in rats with inherited retinal dystrophy”, Doc Ophthalmol. 1992;79(2):141-50.
  • He C, Tsuchiyama SK, Nguyen QT, et al., "Enhanced Longevity by Ibuprofen, Conserved in Multiple Species, Occurs in Yeast through Inhibition of Tryptophan Import", PLoS Genet. 2014 Dec 18;10(12):e1004860
  • Healy D, "Let Them Eat Prozac: The Unhealthy Relationship Between the Pharmaceutical Industry and Depression", 2004
  • Healy D, Le Noury J, Mangin D, “Enduring Sexual Dysfunction After Treatment With Antidepressants, 5α-Reductase Inhibitors And Isotretinoin: 300 Cases”, Int J Risk Saf Med. 2018;29(3-4):125-134. doi: 10.3233/JRS-180744. [https://archive.ph/Fhmqm | https://tinyurl.com/wh8fyu7; accessed 5-Feb-2020]
  • Heuther G, Hajak G, Reimer A, Poeggeler B, Blömer M, Rodenbeck A, Rüther E, “The metabolic fate of infused L-tryptophan in men: possible clinical implications of the accumulation of circulating tryptophan and tryptophan metabolites”, Psychopharmacology (Berl). 1992;109(4):422-32.
  • HHS (US Department of Health and Human Services), “The Health Consequences of Smoking: A Report of the Surgeon General”, Atlanta, GA: US Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion, Office of Smoking and Health; 2004.
  • Hoffer A: Schizophrenia: An Evolutionary Defense Against Severe Stress”, Journal of Orthomolecular Medicine, Vol. 9, No. 4, Pgs. 205-221, 1994
  • Huether G, et al. (Editors), “Tryptophan, Serotonin, and Melatonin: Basic Aspects and Applications”, Advances In Experimental Medicine And Biology, Volume 467, 1999
  • Jackson GE, "Drug-Induced Dementia: A Perfect Crime", 2009
  • Jacob RA, Swendseid ME, "Niacin", Pp. 184–190, in: Ziegler EE, Filer LJ, (Editors), 'Present Knowledge in Nutrition', 7th Edition, 1996
  • Jacobs BL, “Serotonin and behavior: emphasis on motor control”, J Clin Psychiatry. 1991 Dec;52 Suppl:17-23.
  • Jay E, "Pill Poppers", BBC Two (Horizon), 20-Jan-2010
  • Johansson AS, Owe-Larsson B, Asp L, et al., "Activation of kynurenine pathway in ex vivo fibroblasts from patients with bipolar disorder or schizophrenia: cytokine challenge increases production of 3-hydroxykynurenine", J Psychiatr Res. 2013 Nov;47(11):1815-23.
  • Jørgensen HS, “Studies on the neuroendocrine role of serotonin”, Dan Med Bull. 2007 Nov;54(4):266-88.
  • Kaminsky SM, Levy O, Garry MT, Carrasco N, “Inhibition of the Na+/I- symporter by harmaline and 3-amino-1-methyl-5H-pyrido(4,3-b)indole acetate in thyroid cells and membrane vesicles”, Eur J Biochem. 1991 Aug 15;200(1):203-7.
  • Kanai Y, Aosaki T, Wada O, Manabe S, “Suppression of GABA-induced chloride current by 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2)”, Eur J Pharmacol. 1989 Aug 3;166(3):553-6.
  • Kepplinger B, Baran H, Kainz A, Ferraz-Leite H, Newcombe J, Kalina P, “Age-related increase of kynurenic acid in human cerebrospinal fluid - IgG and beta2-microglobulin changes”, Neurosignals. 2005;14(3):126-35.
  • Kim YO, Chung HJ, Chung ST, Kim JH, Park JH, Kil KS, Cho DH, “Phototoxicity of melatonin”, Arch Pharm Res. 1999 Apr;22(2):143-50.
  • Kirsch I, “The Emperor's New Drugs: Exploding the Antidepressant Myth”, 2009
  • Knook L, Kavelaars A, Sinnema G, Kuis W, Heijnen CJ, “High nocturnal melatonin in adolescents with chronic fatigue syndrome”, J Clin Endocrinol Metab. 2000 Oct;85(10):3690-2.
  • Koren-Schwartzer N, Chen-Zion M, Ben-Porat H, Beitner R, “Serotonin-induced decrease in brain ATP, stimulation of brain anaerobic glycolysis and elevation of plasma hemoglobin; the protective action of calmodulin antagonists”, Gen Pharmacol. 1994 Oct;25(6):1257-62.
  • Korszun A, Sackett-Lundeen L, Papadopoulos E, Brucksch C, Masterson L, Engelberg NC, Haus E, Demitrack MA, Crofford L, “Melatonin levels in women with fibromyalgia and chronic fatigue syndrome”, J Rheumatol. 1999 Dec;26(12):2675-80.
  • Kostoglou-Athanassiou I, Treacher DF, Wheeler MJ, Forsling ML, “Melatonin administration and pituitary hormone secretion”, Clin Endocrinol (Oxf). 1998 Jan;48(1):31-7.
  • Kotake Y, “Xanthurenic acid, an abnormal metabolite of tryptophan and the diabetic symptoms caused in albino rats by its production”, J Vitaminol (Kyoto). 1955 Feb 10;1(2):73-87.
  • Lacasse JR, Leo J, "Serotonin and depression: a disconnect between the advertisements and the scientific literature", PLoS Med. 2005 Dec;2(12):e392.
  • Le Floc'h N, Otten W, Merlot E, “Tryptophan metabolism, from nutrition to potential therapeutic applications”, Amino Acids. 2011 Nov;41(5):1195-205.
  • Lepkovsky S, Roboz E, Haagen-Smit AJ, “Xanthurenic acid and its role in the tryptophane metabolism of pyridoxine-deficient rats”, The Journal of Biological Chemistry, 149:195-201, 1943
  • Linderholm KR, Andersson A, Olsson S, Olsson E, Snodgrass R, Engberg G, Erhardt S, “Activation of rat ventral tegmental area dopamine neurons by endogenous kynurenic acid: a pharmacological analysis”, Neuropharmacology. 2007 Dec;53(8):918-24. Epub 2007 Sep 20.
  • López A, García JA, Escames G, Venegas C, Ortiz F, López LC, Acuña- Castroviejo D, “Melatonin protects the mitochondria from oxidative damage reducing oxygen consumption, membrane potential, and superoxide anion production”, J Pineal Res. 2009 Mar;46(2):188-98. Epub 2008 Nov 19.
  • Love LA, Rader JI, Crofford LJ, Raybourne RB, Principato MA, Page SW, Trucksess MW, Smith MJ, Dugan EM, Turner ML, et al, “Pathological and immunological effects of ingesting L-tryptophan and 1,1'-ethylidenebis (L-tryptophan) in Lewis rats”, J Clin Invest. 1993 Mar;91(3):804-11.
  • MacLean MR, Dempsie Y, “Serotonin and pulmonary hypertension--from bench to bedside?”, Curr Opin Pharmacol. 2009 Jun;9(3):281-6. Epub 2009 Mar 13.
  • Maclean MR, Dempsie Y, “The serotonin hypothesis of pulmonary hypertension revisited”, Adv Exp Med Biol. 2010;661:309-22.
  • Maharaj DS, Molell H, Antunes EM, Maharaj H, Maree DM, Nyokong T, Glass BD, Daya S, “Melatonin generates singlet oxygen on laser irradiation but acts as a quencher when irradiated by lamp photolysis”, J Pineal Res. 2005 Apr;38(3):153-6.
  • Maier C, Stevens JF, “Metabolomics In The New Millennium”, Linus Pauling Institute (LPI), Oregon State University Research Newsletter, Pp. 12-13, Spring-Summer 2017
  • Malina HZ, Richter C, Mehl M, Hess OM, “Pathological apoptosis by xanthurenic acid, a tryptophan metabolite: activation of cell caspases but not cytoskeleton breakdown”, BMC Physiol. 2001;1:7. Epub 2001 Jul 4.
  • Manabe S, Wada O, “Carcinogenic tryptophan pyrolysis products in the environment”, J Toxicol Sci. 1991 Feb;16 Suppl 1:63-72.
  • Mann DA, Oakley F, “Serotonin paracrine signaling in tissue fibrosis”, Biochim Biophys Acta. 2012 Sep 29. pii: S0925-4439(12)00218-9. doi: 10.1016/j.bbadis.2012.09.009. [Epub ahead of print]
  • Marinho FC, Takagaki TY, “Hypercoagulability and lung cancer”, [Article in English, Portuguese], J Bras Pneumol. 2008 May;34(5):312-22.
  • Martin W, “Medical Heroes & Heretics”, Devin-Adair, 1977
  • Mateos SS, Sánchez CL, Paredes SD, Barriga C, Rodríguez AB, “Circadian levels of serotonin in plasma and brain after oral administration of tryptophan in rats”, Basic Clin Pharmacol Toxicol. 2009 Jan;104(1):52-9.
  • Matuszak Z, Bilska MA, Reszka KJ, Chignell CF, Bilski P, “Interaction of singlet molecular oxygen with melatonin and related indoles”, Photochem Photobiol. 2003 Nov;78(5):449-55.
  • Medvedev AE, “Regulation by biogenic amines of energy functions of mitochondria”, [Article in Russian], Vopr Med Khim. 1990 Sep-Oct;36(5):18- 21.
  • Medvedev AE, Gorkin VZ, “The role of monoamine oxidase in the regulation of mitochondrial energy functions”, [Article in Russian], Vopr Med Khim. 1991 Sep-Oct;37(5):2-6.
  • Mela L, Goodwin CW, Miller LD, “In vivo control of mitochondrial enzyme concentrations and activity by oxygen”, Am J Physiol. 1976 Dec;231(6):1811- 6.
  • Ménard G, Turmel V, Bissonnette EY, “Serotonin modulates the cytokine network in the lung: involvement of prostaglandin E2”, Clin Exp Immunol. 2007 Nov;150(2):340-8.
  • Mendelsohn D, Riedel WJ, Sambeth A, “Effects of acute tryptophan depletion on memory, attention and executive functions: a systematic review”, Neurosci Biobehav Rev. 2009 Jun;33(6):926-52. Epub 2009 Mar 18.
  • Metzner L, Kottra G, Neubert K, Daniel H, Brandsch M, “Serotonin, L- tryptophan, and tryptamine are effective inhibitors of the amino acid transport system PAT1”, FASEB J. 2005 Sep;19(11):1468-73.
  • Mezrich JD, Fechner JH, Zhang X, Johnson BP, Burlingham WJ, Bradfield CA, "An interaction between kynurenine and the aryl hydrocarbon receptor can generate regulatory T cells", J Immunol. 2010 Sep 15;185(6):3190-8.
  • Mironova EM, Pavlova ON, Ronkina TI, “The early diagnosis, evaluation of treatment results and modelling of certain aspects of the pathogenesis of retinal dystrophy”, [Article in Russian], Oftalmol Zh. 1989;(8):469-73.
  • Mirzoian RS, “ Neuroprotective and cerebrovascular effects of GABA mimetics”, [Article in Russian], Eksp Klin Farmakol. 2003 Mar-Apr;66(2):53-6.
  • Moehn S, Pencharz PB, Ball RO, “Lessons Learned Regarding Symptoms of Tryptophan Deficiency and Excess from Animal Requirement Studies”, J Nutr. 2012 Dec;142(12):2231S-2235S. doi: 10.3945/jn.112.159061.
  • Mohammad-Zadeh LF, Moses L, Gwaltney-Brant SM, “Serotonin: a review”, J Vet Pharmacol Ther. 2008 Jun;31(3):187-99.
  • Mohr E, Bruno G, Foster N, Gillespie M, Cox C, Hare TA, Tamminga C, Fedio P, Chase TN, “GABA-agonist therapy for Alzheimer's disease”, Clin Neuropharmacol. 1986;9(3):257-63.
  • Molina-Cerrillo J, Alonso-Gordoa T, Martínez-Sáez O, Grande E, "Inhibition of Peripheral Synthesis of Serotonin as a New Target in Neuroendocrine Tumors", Oncologist. 2016 Jun;21(6):701-7. doi: 10.1634/theoncologist.2015-0455.
  • Moncrieff J, "The Myth of the Chemical Cure: A Critique of Psychiatric Drug Treatment", 2008
  • Mousa SA, “Role of current and emerging antithrombotics in thrombosis and cancer”, Drugs Today (Barc). 2006 May;42(5):331-50.
  • Mueller GP, Twohy CP, Chen HT, Advis JP, Meites J, “Effect of L-tryptophan and restraint stress on hypothalmic and brain serotonin turnover, and pituitary TSH and prolactin release in rats”, Life Sci. 1976 Apr 1;18(7):715-24.
  • Murphy PJ, Myers BL, Badia P, “Nonsteroidal anti-inflammatory drugs alter body temperature and suppress melatonin in humans”, Physiol Behav. 1996 Jan;59(1):133-9.
  • Murray MT, Pizzorno JE, “Encyclopedia Of Natural Medicine”, Revised 2nd Edition, 1998
  • Nagalski A, Bryla J, "Niacin in therapy", [Article in Polish], Postepy Hig Med Dosw (Online). 2007 May 15;61:288-302.
  • Naito AT, Komuro I, "Chronic inflammation and organismal aging", [Article in Japanese], Clin Calcium. 2013 Jan;23(1):51-8.
  • Németh H, Toldi J, Vécsei L, “Role of kynurenines in the central and peripheral nervous systems”, Curr Neurovasc Res. 2005 Jul;2(3):249-60.
  • Nemoto N, Kusumi S, Takayama S, Nagao M, Sugimura T, “Metabolic activation of 3-amino-5H-pyrido[4,3-b]indole, a highly mutagenic principle in tryptophan pyrolysate, by rat liver enzymes”, Chem Biol Interact. 1979 Oct;27(2-3):191- 8.
  • Newling DW, Robinson MR, Smith PH, Byar D, Lockwood R, Stevens I, De Pauw M, Sylvester R, “Tryptophan metabolites, pyridoxine (vitamin B6) and their influence on the recurrence rate of superficial bladder cancer. Results of a prospective, randomised phase III study performed by the EORTC GU Group. EORTC Genito-Urinary Tract Cancer Cooperative Group”, Eur Urol. 1995;27(2):110-6.
  • Oberweis B, Gragnoli C, “Potential role of prolactin in antipsychotic-mediated association of schizophrenia and type 2 diabetes”, J Cell Physiol. 2012 Aug;227(8):3001-6.
  • Ohta T ; Suzuki S ; Kurechi T, “Formation of mutagen by the reaction of nitrite with several tryptophan decomposition products resulting from acid hydrolysis of protein”, Mutat Res; 111 (1). 1983. 33-42.
  • Okada S, Kamb ML, Pandey JP, Philen RM, Love LA, Miller FW, “Immunogenetic risk and protective factors for the development of L-tryptophan-associated eosinophilia-myalgia syndrome and associated symptoms”, Arthritis Rheum. 2009 Oct 15;61(10):1305-11.
  • Okatani Y, Okada M, Sagara Y, “Stimulation of prolactin secretion by melatonin is not mediated by opioids”, Horm Res. 1994;41(1):38-42.
  • Okuno A, Fukuwatari T, Shibata K, “Urinary excretory ratio of anthranilic acid/kynurenic acid as an index of the tolerable amount of tryptophan”, Biosci Biotechnol Biochem. 2008 Jul;72(7):1667-72. Epub 2008 Jul 7.
  • Ooka H, Segall PE, Timiras PS, “Histology and survival in age-delayed low- tryptophan-fed rats”, Mech Ageing Dev. 1988 Apr;43(1):79-98.
  • Opitz CA, Litzenburger UM, Sahm F, Ott M, Tritschler I, Trump S, Schumacher T, Jestaedt L, Schrenk D, Weller M, Jugold M, Guillemin GJ, Miller CL, Lutz C, Radlwimmer B, Lehmann I, von Deimling A, Wick W, Platten M, "An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor”, Nature. 2011 Oct 5;478(7368):197-203.
  • O'Toole JF, Patel HV, Naples CJ, Fujioka H, Hoppel CL, “Decreased cytochrome c mediates an age-related decline of oxidative phosphorylation in rat kidney mitochondria”, Biochem J. 2010 Mar 15;427(1):105-12.
  • Pawelec G, Goldeck D, Derhovanessian E, "Inflammation, ageing and chronic disease", Curr Opin Immunol. 2014 Aug;29:23-8.
  • Peat R, "From PMS to MENOPAUSE: Female Hormones in Context", 1997
  • Peat R, "The Transparency Of Life: Cataracts As A Model Of Age-related Disease", Ray Peat's Newsletter, www.raypeat.com, Spring 2006
  • Peat R, "Tryptophan, Serotonin, And Aging", Ray Peat's Newsletter, www.raypeat.com, Fall 2006
  • Peat R, "Lactate Vs. Co2 In Wounds, Sickness, And Aging; The Other Approach To Cancer", Ray Peat's Newsletter, www.raypeat.com, Sept. 2008
  • Peat R, "Controlling Symptoms In Multiple Sclerosis And Stress-Related Diseases", Ray Peat's Newsletter, www.raypeat.com, Nov. 2008
  • Peat R, "Serotonin, Depression, And Aggression: The Problem Of Brain Energy", Ray Peat's Newsletter, www.raypeat.com, Spring 2009
  • Peat R, "Thyroid, Insomnia, And The Insanities: Commonalities In Disease", Ray Peat's Newsletter, www.raypeat.com, Summer 2009
  • Peat R, "Gelatin, Stress, Longevity", Ray Peat's Newsletter, www.raypeat.com, Fall 2009
  • Peat R, "Serotonin: Effects In Disease, Aging And Inflammation", Ray Peat's Newsletter, www.raypeat.com, March 2011
  • Peat R, "Osteoporosis, Aging, Tissue Renewal, And Product Science", Ray Peat's Newsletter, www.raypeat.com, Sept. 2011
  • Peat R, "Hot Flashes, Energy, And Aging", Draft Newsletter, Personal Correspondence, 3-Sept-2012, Ahead Of Print.
  • Peat R, "Phosphate, Activation, And Aging", Ray Peat's Newsletter, www.raypeat.com, Nov. 2012
  • Pechenova TN, Sushkova VV, Solodova EV, Gulyi MF, “ Effect of tryptophan excess in a diet on amino acid composition of skin collagen and on an initial stage of protein biosynthesis in rat live”, [Article in Ukrainian], Ukr Biokhim Zh. 1983 Mar-Apr;55(2):146-50.
  • Pipkin GE, Schlegel JU, Nishimura R, Shultz GN, “Inhibitory effect of L-ascorbate on tumor formation in urinary bladders implanted with 3-hydroxyanthranilic acid”, Proc Soc Exp Biol Med. 1969 Jun;131(2):522-4.
  • Platten M, Wick W, Van den Eynde BJ, “Tryptophan Catabolism in Cancer: Beyond IDO and Tryptophan Depletion”, Cancer Res. 2012 Oct 22. [Epub ahead of print]
  • Porter CC, Clark I, Silber RH, “The effect of B vitamin deficiencies on tryptophan metabolism in the rat”, Arch Biochem. 1948 Aug;18(2):339-43.
  • Prescrire International (Journal), "SSRI Antidepressants: Persistent Sexual Dysfunction", [No Authors Listed], Vol. 29, No. 212, P. 45, Feb-2020 [https://archive.is/lvENu; accessed 6-Feb-2020]
  • Rappoport J, “Epidemic: Shocked That Tests For The Virus Are Worthless? You Shouldn’t Be”, www.NoMoreFakeNews.com, 27-May-2020 [https://is.gd/Eq6Fm6 | http://archive.is/tHLtg | https://tinyurl.com/y74tamg8; accessed 30-May-2020]
  • Ravdin PM, Cronin KA, Howlader N, Berg CD, Chlebowski RT, Feuer EJ, Edwards BK, Berry DA, “The decrease in breast-cancer incidence in 2003 in the United States”, N Engl J Med. 2007 Apr 19;356(16):1670-4.
  • Reddy P, Edwards LR, “Magnesium Supplementation in Vitamin D Deficiency”, Am J Ther. 2017 May 3. doi: 10.1097/MJT.0000000000000538. [Epub ahead of print]
  • Reyes Ocampo J, Lugo Huitrón R, González-Esquivel D, Ugalde-Muñiz P, Jiménez-Anguiano A, Pineda B, Pedraza-Chaverri J, Ríos C, Pérez de la Cruz V, "Kynurenines with neuroactive and redox properties: relevance to aging and brain diseases", Oxid Med Cell Longev. 2014;2014:646909.
  • Reyes-Toso CF, Ricci CR, de Mignone IR, Reyes P, Linares LM, Albornoz LE, Cardinali DP, Zaninovich A, “In vitro effect of melatonin on oxygen consumption in liver mitochondria of rats”, Neuro Endocrinol Lett. 2003 Oct;24(5):341-4.
  • Reyes-Toso CF, Rebagliati IR, Ricci CR, Linares LM, Albornoz LE, Cardinali DP, Zaninovich A, “Effect of melatonin treatment on oxygen consumption by rat liver mitochondria”, Amino Acids. 2006 Oct;31(3):299-302. Epub 2006 Mar 24.
  • Richard DM, Dawes MA, Mathias CW, et al., "L-Tryptophan: Basic Metabolic Functions, Behavioral Research and Therapeutic Indications", Int J Tryptophan Res. 2009 Mar 23;2:45-60.
  • Rieber N, Belohradsky BH, “AHR activation by tryptophan--pathogenic hallmark of Th17-mediated inflammation in eosinophilic fasciitis, eosinophilia-myalgia- syndrome and toxic oil syndrome”, Immunol Lett. 2010 Feb 16;128(2):154-5. Epub 2009 Nov 24.
  • Rom-Bugolavskaia ES, Shcherbakova VS, Komarova IV, “The effect of melatonin and mexamine on the human thyroid under in-vitro conditions”, [Article in Russian], Eksp Klin Farmakol. 1997 Jul-Aug;60(4):46-9.
  • Ronen N, Livne E, Gross B, “Oxidative damage in rat tissue following excessive L-tryptophan and atherogenic diets”, Adv Exp Med Biol. 1999;467:497-505.
  • Rothenberg CJ, “The Rise and Fall of Estrogen Therapy: The History of HRT”, Harvard Law School, Class of 2005, April 25, 2005
  • Santana-Rios G, Orner GA, Amantana A, Provost C, Wu SY, Dashwood RH, “Potent antimutagenic activity of white tea in comparison with green tea in the Salmonella assay”, Mutat Res. 2001 Aug 22;495(1-2):61-74.
  • Sarwar G, Botting HG, Collins M, “A comparison of fasting serum amino acid profiles of young and elderly subjects”, J Am Coll Nutr. 1991 Dec;10(6):668- 74.
  • Sas K, Robotka H, Toldi J, Vécsei L, “Mitochondria, metabolic disturbances, oxidative stress and the kynurenine system, with focus on neurodegenerative disorders”, J Neurol Sci. 2007 Jun 15;257(1-2):221-39. Epub 2007 Apr 25.
  • Satoh K, Mishima K, “Hypothermic action of exogenously administered melatonin is dose- dependent in humans”, Clin Neuropharmacol. 2001 Nov-Dec;24(6):334-40.
  • Schlegel JU, “Proposed uses of ascorbic acid in prevention of bladder carcinoma”, Ann N Y Acad Sci. 1975 Sep 30;258:432-7.
  • Schlegel JU, Pipkin GE, Nishimura R, Shultz GN, “The role of ascorbic acid in the prevention of bladder tumor formation”, J Urol. 1970 Feb;103(2):155-9.
  • Schwieler L, Larsson MK, Skogh E, et al., "Increased levels of IL-6 in the cerebrospinal fluid of patients with chronic schizophrenia - significance for activation of the kynurenine pathway", J Psychiatry Neurosci. 2014 Dec 2;39(6):140126. doi: 10.1503/jpn.140126. [Epub ahead of print]
  • Searle CE (Editor), “Chemical Carcinogens”, ACS Monograph 173, Washington, DC: American Chemical Society, 1976, pg. 443
  • Seelig MS, “Magnesium (and trace substance) deficiencies in the pathogenesis of cancer”, Biol Trace Elem Res. 1979 Dec;1(4):273-97. doi: 10.1007/BF02778831.
  • Segall P, “Long-term tryptophan restriction and aging in the rat”, Aktuelle Gerontol. 1977 Oct;7(10):535-8.
  • Segall PE, Timiras PS, “Patho-physiologic findings after chronic tryptophan deficiency in rats: a model for delayed growth and aging”, Mech Ageing Dev. 1976 Mar-Apr;5(2):109-24.
  • Seyfried TN, "Cancer as a Metabolic Disease: On the Origin, Management, and Prevention of Cancer", 2012
  • Sharma AM, Schorr U, Thiede HM, Distler A, “Effect of dietary salt restriction on urinary serotonin and 5-hydroxyindoleacetic acid excretion in man”, J Hypertens. 1993 Dec;11(12):1381-6.
  • Sharma HS, “12 - Influence of Serotonin on the Blood-Brain and the Blood- Spinal Cord Barriers”, Pages 117–157, from 'Blood-Spinal Cord and Brain Barriers in Health and Disease', Academic Press, 2004
  • Shiah IS, Yatham LN, “GABA function in mood disorders: an update and critical review”, Life Sci. 1998;63(15):1289-303.
  • Shishu, Singla AK, Kaur IP, “Inhibitory effect of curcumin and its natural analogues on genotoxicity of heterocyclic amines from cooked food”, Indian J Exp Biol. 2002 Dec;40(12):1365-72.
  • Shishu, Kaur IP, “Inhibition of mutagenicity of food-derived heterocyclic amines by sulforaphane--a constituent of broccoli”, Indian J Exp Biol. 2003 Mar;41(3):216-9.
  • Sidransky H, “Tryptophan: Biochemical and Health Implications”, 2001
  • Simon N, Jolliet P, Morin C, Zini R, Urien S, Tillement JP, “Glucocorticoids decrease cytochrome c oxidase activity of isolated rat kidney mitochondria”, FEBS Lett. 1998 Sep 11;435(1):25-8.
  • Sjoerdsma A, Weissbach H, Udenfriend S, "A clinical, physiologic and biochemical study of patients with malignant carcinoid (argentaffinoma)", Am J Med. 1956 Apr;20(4):520-32.
  • Smith MJ, Garrett RH, “A heretofore undisclosed crux of eosinophilia-myalgia syndrome: compromised histamine degradation”, Inflamm Res. 2005 Nov;54(11):435-50.
  • South J, “Oxitriptan; Prozac's True Alternative”, International Antiaging Systems Bulletin, Oct-1996
  • Stone TW, “Neuropharmacology of quinolinic and kynurenic acids”, Pharmacol Rev. 1993 Sep;45(3):309-79.
  • Stone TW, Mackay GM, Forrest CM, Clark CJ, Darlington LG, “Tryptophan metabolites and brain disorders”, Clin Chem Lab Med. 2003 Jul;41(7):852-9.
  • Streeter CC, Whitfield TH, Owen L, Rein T, Karri SK, Yakhkind A, Perlmutter R, Prescot A, Renshaw PF, Ciraulo DA, Jensen JE, “Effects of yoga versus walking on mood, anxiety, and brain GABA levels: a randomized controlled MRS study”, J Altern Complement Med. 2010 Nov;16(11):1145-52. Epub 2010 Aug 19.
  • Sugawara T, Sieving PA, Iuvone PM, Bush RA, “The melatonin antagonist luzindole protects retinal photoreceptors from light damage in the rat”, Invest Ophthalmol Vis Sci. 1998 Nov;39(12):2458-65.
  • Sutherland ER, Ellison MC, Kraft M, Martin RJ, “Elevated serum melatonin is associated with the nocturnal worsening of asthma”, J Allergy Clin Immunol. 2003 Sep;112(3):513-7.
  • Suzuki H, Sone H, Kawamura K, Ishihara K, “Liver injury due to 3-amino-1- methyl-5h-pyrido [4,3-b] indole (Trp-P-2) and its prevention by miso”, Biosci Biotechnol Biochem. 2008 Aug;72(8):2236-8. Epub 2008 Aug 7.
  • Takahashi M, Toyoda K, Aze Y, Furuta K, Mitsumori K, Hayashi Y, “The rat urinary bladder as a new target of heterocyclic amine carcinogenicity: tumor induction by 3-amino-1-methyl-5H-pyrido[4,3-b]indole acetate”, Jpn J Cancer Res. 1993 Aug;84(8):852-8.
  • Takikawa O, Truscott RJ, Fukao M, Miwa S, “Age-related nuclear cataract and indoleamine 2,3-dioxygenase-initiated tryptophan metabolism in the human lens”, Adv Exp Med Biol. 2003;527:277-85.
  • Tannenbaum SR, “Preventive action of vitamin C on nitrosamine formation”, Int J Vitam Nutr Res Suppl. 1989;30:109-13.
  • Tannenbaum SR, Wishnok JS, Leaf CD, “Inhibition of nitrosamine formation by ascorbic acid”, Am J Clin Nutr. 1991 Jan;53(1 Suppl):247S-250S.
  • ten Cate H, Falanga A, “Overview of the postulated mechanisms linking cancer and thrombosis”, Pathophysiol Haemost Thromb. 2008;36(3-4):122-30.
  • Trousseau A, “Clinique Medicale de L'Hotel Dieu de Paris”, 2nd Edition, London, New Sydenham Society, Vol 3, Pg 94, 1865
  • Trulson ME, Sampson HW, “Ultrastructural changes of the liver following L- tryptophan ingestion in rats”, J Nutr 1986; 116:1109-1115.
  • Tsoukalas N, Chatzellis E, Rontogianni D, et al., “Pancreatic carcinoids (serotonin-producing pancreatic neuroendocrine neoplasms): Report of 5 cases and review of the literature”, Medicine (Baltimore). 2017 Apr;96(16):e6201. doi: 10.1097/MD.0000000000006201.
  • Uehara T, Sumiyoshi T, Matsuoka T, Tanaka K, Tsunoda M, Itoh H, Kurachi M, “Enhancement of lactate metabolism in the basolateral amygdala by physical and psychological stress: role of benzodiazepine receptors”, Brain Res. 2005 Dec 14;1065(1-2):86-91. Epub 2005 Nov 23.
  • Vaishnav A, Lutsep HL, “GABA agonist: clomethiazole”, Curr Med Res Opin. 2002;18 Suppl 2:s5-8.
  • Varga J, Jimenez SA, Uitto J, “L-tryptophan and the eosinophilia-myalgia syndrome: current understanding of the etiology and pathogenesis”, J Invest Dermatol. 1993 Jan;100(1):97S-105S.
  • Wagner DA, Shuker DE, Bilmazes C, Obiedzinski M, Baker I, Young VR, Tannenbaum SR, “Effect of vitamins C and E on endogenous synthesis of N- nitrosamino acids in humans: precursor-product studies with [15N]nitrate”, Cancer Res. 1985 Dec;45(12 Pt 1):6519-22.
  • Wakabayashi K, Kim IS, Kurosaka R, Yamaizumi Z, Ushiyama H, Takahashi M, Koyota S, Tada A, Nukaya H, Goto S, et al., “Identification of new mutagenic heterocyclic amines and quantification of known heterocyclic amines”, Princess Takamatsu Symp. 1995;23:39-49.
  • Warburg O, “On the Origin of Cancer Cells”, Science, Vol. 123 no. 3191 pp. 309-314, 24 February 1956
  • Watanabe M, Takahashi T, Yoshida M, Suzuki M, Muramatsu S, “Relationship between tryptophan intake and urinary excretion of 3-hydroxy-kynurenine, 3-hydroxyanthranilic acid, xanthurenic acid and kynurenic acid”, J Nutr Sci Vitaminol (Tokyo). 1979;25(2):115-22.
  • Watanabe M, “ Microanalysis of tryptophan metabolite”, [Article in Japanese], Yakugaku Zasshi. 1997 Nov;117(10-11):657-64.
  • Webley GE, Böhle A, Leidenberger FA, “Positive relationship between the nocturnal concentrations of melatonin and prolactin, and a stimulation of prolactin after melatonin administration in young men”, J Pineal Res. 1988;5(1):19-33.
  • Weinstock M, Blotnick S, Segal M, “Seasonal variation in the development of stress-induced systolic hypertension in the rat”, J Hypertens Suppl. 1985 Dec;3(3):S107-9.
  • Whitaker R, "Anatomy of an Epidemic: Magic Bullets, Psychiatric Drugs, and the Astonishing Rise of Mental Illness in America", 2010
  • Whitaker R,"Answering the Critics: Massachusetts General Hospital Grand Rounds", www.madinamerica.com/2011/12/answering-critics [accessed 2-Aug-2014], 2-Dec-2011
  • Wichers MC, Maes M, “The role of indoleamine 2,3-dioxygenase (IDO) in the pathophysiology of interferon-alpha-induced depression”, J Psychiatry Neurosci. 2004 Jan;29(1):11-7.
  • Wiechmann AF, O'Steen WK, “Melatonin increases photoreceptor susceptibility to light-induced damage”, Invest Ophthalmol Vis Sci. 1992 May;33(6):1894-902.
  • Wiechmann AF, “Regulation of gene expression by melatonin: a microarray survey of the rat retina”, J Pineal Res. 2002 Oct;33(3):178-85.
  • Wiechmann AF, Chignell CF, Roberts JE, “Influence of dietary melatonin on photoreceptor survival in the rat retina: an ocular toxicity study”, Exp Eye Res. 2008 Feb;86(2):241-50.
  • Williams LJ, Henry MJ, Berk M, Dodd S, Jacka FN, Kotowicz MA, Nicholson GC, Pasco JA, “Selective serotonin reuptake inhibitor use and bone mineral density in women with a history of depression”, Int Clin Psychopharmacol. 2008 Mar;23(2):84-7.
  • Winkelman JW, Buxton OM, Jensen JE, Benson KL, O'Connor SP, Wang W, Renshaw PF, “Reduced brain GABA in primary insomnia: preliminary data from 4T proton magnetic resonance spectroscopy (1H-MRS)”, Sleep. 2008 Nov;31(11):1499-506.
  • Winkler T, Sharma HS, Stålberg E, Olsson Y, Dey PK, “Impairment of blood- brain barrier function by serotonin induces desynchronization of spontaneous cerebral cortical activity: experimental observations in the anaesthetized rat”, Neuroscience. 1995 Oct;68(4):1097-104.
  • Wiseman MH, Kalant N, Hoffman MM, “Tryptophan metabolism in normal and diabetic subjects”, J Lab Clin Med. 1958 Jul;52(1):27-33.
  • Woolley DW, Shaw E, “Some neurophysiological aspects of serotonin”, Br Med J. 1954 Jul 17;2(4880):122-6.
  • Wright ML, Pikula A, Babski AM, Labieniec KE, Wolan RB, “Effect of melatonin on the response of the thyroid to thyrotropin stimulation in vitro”, Gen Comp Endocrinol. 1997 Nov;108(2):298-305.
  • Wright ML, Cuthbert KL, Donohue MJ, Solano SD, Proctor KL, “Direct influence of melatonin on the thyroid and comparison with prolactin”, J Exp Zool. 2000 May 1;286(6):625-31.
  • Wu TH, Liao JH, Hou WC, et al., “Astaxanthin protects against oxidative stress and calcium-induced porcine lens protein degradation”, J Agric Food Chem. 2006 Mar 22;54(6):2418-23.
  • Yamazoe Y, Ishii K, Kamataki T, Kato R, Sugimura T, “Isolation and characterization of active metabolites of tryptophan-pyrolysate mutagen, TRP- P-2, formed by rat liver microsomes”, Chem Biol Interact. 1980 May;30(2):125-38.
  • Yamazoe Y, Ishii K, Kamataki T, Kato R, “Structural elucidation of a mutagenic metabolite of 3-amino-1-methyl-5H-pyrido[4,3-b]indole”, Drug Metab Dispos. 1981 May-Jun;9(3):292-6.
  • Yaryura-Tobias JA, Bhagavan HN, Neziroglu F, “Tryptophan and Perceptual Schizophrenias”, Letter to the Editor, Orthomolecular Psychiatry, Vol. 6, No. 2, Pps. 193-194, 1977
  • Yoshimoto M, Tsutsumi M, Iki K, Sasaki Y, Tsujiuchi T, Sugimura T, Wakabayashi K, Konishi Y, “Carcinogenicity of heterocyclic amines for the pancreatic duct epithelium in hamsters”, Cancer Lett. 1999 Sep 1;143(2):235-9.
  • Young P, Finn BC, Alvarez F, Verdaguer MF, Bottaro FJ, Bruetman JE, “Serotonin syndrome: four report cases and review of the literature”, [Article in Spanish], An Med Interna. 2008 Mar;25(3):125-30.
  • Yuwiler A, Brammer GL, Morley JE, Raleigh MJ, Flannery JW, Geller E, “Short- term and repetitive administration of oral tryptophan in normal men. Effects on blood tryptophan, serotonin, and kynurenine concentrations”, Arch Gen Psychiatry. 1981 Jun;38(6):619-26.
  • Zamanakou M, Germenis AE, Karanikas V, “Tumor immune escape mediated by indoleamine 2,3-dioxygenase”, Immunol Lett. 2007 Aug 15;111(2):69-75. Epub 2007 Jul 2.
  • Zarkovsky AM, “The inhibitory effect of endogenous convulsants quinolinic acid and kynurenine on the pentobarbital stimulation of [3H]flunitrazepam binding”, Pharmacol Biochem Behav. 1986 May;24(5):1215-7.
  • Zolkowska D, Rothman RB, Baumann MH, “Amphetamine analogs increase plasma serotonin: implications for cardiac and pulmonary disease”, J Pharmacol Exp Ther. 2006 Aug;318(2):604-10. Epub 2006 Apr 27.

  1. Home
  2. Risks: Tryptophan Side Effects